LG P2839 [国家集训队]middle
\(\text{Solution}\)
不考虑起点区间和终点区间的限制,求区间中位数
可以二分中位数,大于等于中位数的位置赋为 \(1\),小于的位置赋 \(-1\)
当区间和大于等于 \(0\) 时此数才可能为中位数
因为有多个询问,但中位数数值只可能有 \(n\) 个
所以预处理时枚举当前中位数,处理出序列此时区间和的情况,线段树即可
但一棵线段树空间是 \(O(n log n)\) 的,\(n\) 棵不可行
注意到中位数 \(m\) 到 \(m+1\) 时只有值为 \(m\) 的位置从 \(1\) 变到了 \(-1\),其他都一样
启示我们可以用主席树维护,于是这个问题就解决了
回到本题,仍旧预处理并且二分答案
起点区间和终点区间夹的区间是必选的,取出区间和即可
起点和终点待定,确定某个起点后,此起点到起点区间右端点的数都要选,终点同理,即取后缀和前缀
那么在二分中位数的情况下,前缀和后缀越大越好
维护区间和时顺便维护区间最大前后缀即可
\(\text{Code}\)
#include <cstdio>
#include <algorithm>
#define re register
using namespace std;
const int N = 20005, INF = N * 10;
int n, m, q[4], rt[N], size;
struct nod{int v, id;}a[N];
inline bool cmp(nod a, nod b){return a.v < b.v;}
struct node{int sum, lx, rx;};
struct tree{int ls, rs; node t;}seg[N * 61];
inline node operator + (const node &a, const node &b)
{
return node{a.sum + b.sum, max(a.lx, a.sum + b.lx), max(b.rx, b.sum + a.rx)};
}
void update(int &p, int pre, int l, int r, int x, int v)
{
p = ++size, seg[p] = seg[pre];
if (l == r)
{
seg[p].t.sum += v, seg[p].t.lx += v, seg[p].t.rx += v;
return;
}
int mid = l + r >> 1;
if (x <= mid) update(seg[p].ls, seg[pre].ls, l, mid, x, v);
else update(seg[p].rs, seg[pre].rs, mid + 1, r, x, v);
seg[p].t = seg[seg[p].ls].t + seg[seg[p].rs].t;
}
node query(int p, int l, int r, int tl, int tr)
{
if (tl > r || tr < l) return node{0, -INF, -INF};
if (tl <= l && r <= tr) return seg[p].t;
int mid = l + r >> 1; node res = {0, -INF, -INF};
if (tl <= mid) res = query(seg[p].ls, l, mid, tl, tr);
if (tr > mid) res = res + query(seg[p].rs, mid + 1, r, tl, tr);
return res;
}
inline int check(int mid)
{
int res = 0;
if (q[1] + 2 <= q[2]) res = query(rt[mid], 1, n, q[1] + 1, q[2] - 1).sum;
res += query(rt[mid], 1, n, q[0], q[1]).rx + query(rt[mid], 1, n, q[2], q[3]).lx;
return res >= 0;
}
int main()
{
freopen("LG2839.in", "r", stdin), freopen("LG2839.out", "w", stdout);
scanf("%d", &n);
for(re int i = 1; i <= n; i++) scanf("%d", &a[i].v), a[i].id = i;
sort(a + 1, a + n + 1, cmp);
for(re int i = 1; i <= n; i++) update(rt[1], rt[1], 1, n, i, 1);
for(re int i = 2; i <= n; i++) update(rt[i], rt[i - 1], 1, n, a[i - 1].id, -2);
scanf("%d", &m);
for(int l, r, mid, ans, lst = 0; m; --m)
{
for(int i = 0; i < 4; i++) scanf("%d", &q[i]), q[i] = (q[i] + lst) % n + 1;
sort(q, q + 4), l = 1, r = n, ans = 0;
while (l <= r)
{
mid = l + r >> 1;
if (check(mid)) ans = mid, l = mid + 1;
else r = mid - 1;
}
printf("%d\n", lst = a[ans].v);
}
}
LG P2839 [国家集训队]middle的更多相关文章
- P2839 [国家集训队]middle
P2839 [国家集训队]middle 好妙的题啊,,,, 首先二分一个答案k,把数列里>=k的数置为1,=0就是k>=中位数,<0就是k<中位数 数列的最大和很好求哇 左边的 ...
- [洛谷P2839][国家集训队]middle
题目大意:给你一个长度为$n$的序列$s$.$Q$个询问,问在$s$中的左端点在$[a,b]$之间,右端点在$[c,d]$之间的子段中,最大的中位数. 强制在线. 题解:区间中位数?二分答案,如果询问 ...
- 洛谷P2839 [国家集训队]middle 主席树_二分
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...
- Luogu P2839 [国家集训队]middle
题目 首先我们考虑解决中位数一类问题的常用手段:二分\(mid\),将大于等于它的设为\(1\),小于它的设为\(−1\),判断区间和是否\(\ge0\). 对于询问\(a,b,c,d\),二分完\( ...
- [国家集训队]middle 解题报告
[国家集训队]middle 主席树的想法感觉挺妙的,但是这题数据范围这么小,直接分块草过去不就好了吗 二分是要二分的,把\(<x\)置\(-1\),\(\ge x\)的置\(1\),于是我们需要 ...
- [国家集训队]middle
[国家集训队]middle 题目 解法 开\(n\)颗线段树,将第\(i\)颗线段树中大于等于第\(i\)小的数权值赋为1,其他的则为-1,对于每个区间维护一个区间和,最大前缀和,最大后缀和. 然后二 ...
- CF484E Sign on Fence && [国家集训队]middle
CF484E Sign on Fence #include<bits/stdc++.h> #define RG register #define IL inline #define _ 1 ...
- 【LG2839】[国家集训队]middle
[LG2839][国家集训队]middle 题面 洛谷 题解 按照求中位数的套路,我们二分答案\(mid\),将大于等于\(mid\)的数设为\(1\),否则为\(-1\). 若一个区间和大于等于\( ...
- BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)
BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...
- luogu2839 [国家集训队]middle
题目链接:洛谷 题目大意:给定一个长度为$n$的序列,每次询问左端点在$[a,b]$,右端点在$[c,d]$的所有子区间的中位数的最大值.(强制在线) 这里的中位数定义为,对于一个长度为$n$的序列排 ...
随机推荐
- 云小课|云小课教您如何选择Redis实例类型
阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云.更多精彩内容请单击此处. 摘要:购买Redis实例 ...
- Kettle基础及快速入门
(一)概述 1.ETL ETL(Extract-Transform-Load的缩写,即数据抽取.转换.装载的过程) ETL工具:Sqoop,DataX,Kettle,Talend等 2.Kettle介 ...
- 【每日一题】2021年12月6日-剑指 Offer 22. 链表中倒数第k个节点
输入一个链表,输出该链表中倒数第k个节点.为了符合大多数人的习惯,本题从1开始计数,即链表的尾节点是倒数第1个节点. 例如,一个链表有 6 个节点,从头节点开始,它们的值依次是 1.2.3.4.5.6 ...
- 重学c#系列——linq(1) [二十七]
前言 简单介绍一下linq,linq很多人其实用的很熟练了,但是有些人不知道自己用的是linq. 正文 在介绍linq 之前,先介绍一下集合. public interface ICollection ...
- 去哪儿是如何做到大规模故障演练的?|TakinTalks
# 一分钟精华速览 # 混沌工程作为一种提高技术架构弹性能力和容错能力的复杂技术手段,近年来讨论声音不断,相比在分布式系统上进行随机的故障注入实验,基于混沌工程的大规模自动化故障演练,不仅能将&quo ...
- jmeter Foreach 控制器与json提取器/正则表达式
适用场景:对某些业务数据依次操作 如:删除某个用户下的所有人员数据,无批量删除接口时,只能循环调用删除人员接口,直到删除完成 返回数据格式: 1. 使用json提取器或正则表达式提取业务数据(jso ...
- Kagol:2022年最值得推荐的前端开源文章
大家好,我是 Kagol,Vue DevUI 作者,从2020年开始一直专注于前端开源组件库的建设,在前端开源组件库.开源社区运营方面积累了一些经验,2020年主要的创作也是围绕前端组件库和开源两个主 ...
- 为什么NoSQL数据库这么受欢迎?
大数据时代,NoSQL数据库是企业构建数据能力的核心工具之一.近期,在2022腾讯全球数字生态大会NoSQL数据库专场上,腾讯云发布了多项NoSQL产品能力升级,并重点讲解了其背后的自研技术要点及实现 ...
- [python] 基于Gradio可视化部署机器学习应用
Gradio是一个开源的Python库,用于构建机器学习和数据科学演示应用.有了Gradio,你可以围绕你的机器学习模型或数据科学工作流程快速创建一个简单漂亮的用户界面.Gradio适用于以下情况: ...
- [Untiy]贪吃蛇大作战(一)——开始界面
前言: 刚学unity没多久吧(大概1个月多点),这是我自己做的除官网之外的第一个游戏demo,中间存在很多不足的地方,但是还是希望可以给需要的人提供一些思路和帮助,有问题的小伙伴可以找我一起探讨一起 ...