洛谷P1162 填涂颜色

题目描述

由数字 \(0\) 组成的方阵中,有一任意形状闭合圈,闭合圈由数字 \(1\) 构成,围圈时只走上下左右 \(4\) 个方向。现要求把闭合圈内的所有空间都填写成 \(2\)。例如:\(6\times 6\) 的方阵(\(n=6\)),涂色前和涂色后的方阵如下:

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

输入格式

每组测试数据第一行一个整数 \(n(1 \le n \le 30)\)。

接下来 \(n\) 行,由 \(0\) 和 \(1\) 组成的 \(n \times n\) 的方阵。

方阵内只有一个闭合圈,圈内至少有一个 \(0\)。

输出格式

已经填好数字 \(2\) 的完整方阵。

样例输入

6
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

样例输出

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

题目分析

类似于DFS的连通块问题,但要将外围的\(0\)标记为不行(因为最外一圈始终有不少于一个开放,即非1区域)

随后用DFS从任意一个\(0\)开始染色就解决了

AC代码

#include<bits/stdc++.h>
using namespace std;
int n,mapp[50][50],dx[5]={0,-1,0,1,-0},dy[5]={0,0,1,0,-1}; //打表
void dfs(int p, int q){
for(int i=1;i<=4;i++){
int np=p+dx[i],nq=q+dy[i];
if(np>0&&np<n+1&&nq>0&&nq<n+1&&mapp[np][nq]==0){
mapp[np][nq]=3; //可以新建一个bool型数组,也可以像这样直接标记
dfs(np,nq);
}
}
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>mapp[i][j];
}
}
for(int i=1;i<=n;i++){ //前两次循坏排除边界0
if(mapp[i][1]==0){
dfs(i,1);
}
if(mapp[i][n]==0){ //此处不能写else if(过来人的痛)
dfs(i,n);
}
}
for(int i=1;i<=n;i++){
if(mapp[1][i]==0){
dfs(1,i);
}
if(mapp[n][i]==0){
dfs(n,i);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mapp[i][j]==3) cout<<0<<' ';
else if(mapp[i][j]==1) cout<<1<<' ';
else if(mapp[i][j]==0) cout<<2<<' ';
}
cout<<endl;
}
return 0;
}

洛谷P1135 奇怪的电梯

题目描述

呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 \(i\) 层楼(\(1 \le i \le N\))上有一个数字 \(K_i\)(\(0 \le K_i \le N\))。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: \(3, 3, 1, 2, 5\) 代表了 \(K_i\)(\(K_1=3\),\(K_2=3\),……),从 \(1\) 楼开始。在 \(1\) 楼,按“上”可以到 \(4\) 楼,按“下”是不起作用的,因为没有 \(-2\) 楼。那么,从 \(A\) 楼到 \(B\) 楼至少要按几次按钮呢?

输入格式

共二行。

第一行为三个用空格隔开的正整数,表示 \(N, A, B\)(\(1 \le N \le 200\),\(1 \le A, B \le N\))。

第二行为 \(N\) 个用空格隔开的非负整数,表示 \(K_i\)。

输出格式

一行,即最少按键次数,若无法到达,则输出 -1

样例输入

5 1 5
3 3 1 2 5

样例输出

3

题目分析

另一道典型的入门BFS题型,分析可见这里

AC代码

#include<bits/stdc++.h>
using namespace std;
int n,a,b,k[250],v[250],tp[40020];
bool flag[250];
int main(){
scanf("%d %d %d",&n,&a,&b);
for(int i=1;i<=n;i++) cin>>k[i];
flag[a]=1;
tp[1]=a;
v[a]=1;
int left=1,right=1;
while(left<=right){
int x=tp[left++];
if(x==b){
cout<<v[x]-1;
return 0;
}
for(int i=1;i<=2;i++){
int nx=x+k[x]*pow(-1,i); //判断+-的小技巧
if(nx>0&&nx<n+1&&!flag[nx]){
flag[nx]=1;
v[nx]=v[x]+1;
tp[++right]=nx;
}
}
}
cout<<-1;
return 0;
}

BFS广度优先搜索例题分析的更多相关文章

  1. BFS广度优先搜索 poj1915

    Knight Moves Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25909 Accepted: 12244 Descri ...

  2. 0算法基础学算法 搜索篇第二讲 BFS广度优先搜索的思想

    dfs前置知识: 递归链接:0基础算法基础学算法 第六弹 递归 - 球君 - 博客园 (cnblogs.com) dfs深度优先搜索:0基础学算法 搜索篇第一讲 深度优先搜索 - 球君 - 博客园 ( ...

  3. 图的遍历BFS广度优先搜索

    图的遍历BFS广度优先搜索 1. 简介 BFS(Breadth First Search,广度优先搜索,又名宽度优先搜索),与深度优先算法在一个结点"死磕到底"的思维不同,广度优先 ...

  4. 算法竞赛——BFS广度优先搜索

    BFS 广度优先搜索:一层一层的搜索(类似于树的层次遍历) BFS基本框架 基本步骤: 初始状态(起点)加到队列里 while(队列不为空) 队头弹出 扩展队头元素(邻接节点入队) 最后队为空,结束 ...

  5. GraphMatrix::BFS广度优先搜索

    查找某一结点的邻居: virtual int firstNbr(int i) { return nextNbr(i, n); } //首个邻接顶点 virtual int nextNbr(int i, ...

  6. 步步为营(十六)搜索(二)BFS 广度优先搜索

    上一篇讲了DFS,那么与之相应的就是BFS.也就是 宽度优先遍历,又称广度优先搜索算法. 首先,让我们回顾一下什么是"深度": 更学术点的说法,能够看做"单位距离下,离起 ...

  7. 关于宽搜BFS广度优先搜索的那点事

    以前一直知道深搜是一个递归栈,广搜是队列,FIFO先进先出LILO后进后出啥的.DFS是以深度作为第一关键词,即当碰到岔道口时总是先选择其中的一条岔路前进,而不管其他岔路,直到碰到死胡同时才返回岔道口 ...

  8. [MIT6.006] 13. Breadth-First Search (BFS) 广度优先搜索

    一.图 在正式进入广度优先搜索的学习前,先了解下图: 图分为有向图和无向图,由点vertices和边edges构成.图有很多应用,例如:网页爬取,社交网络,网络传播,垃圾回收,模型检查,数学推断检查和 ...

  9. DFS(深度优先搜索)和BFS(广度优先搜索)

    深度优先搜索算法(Depth-First-Search) 深度优先搜索算法(Depth-First-Search),是搜索算法的一种. 它沿着树的深度遍历树的节点,尽可能深的搜索树的分支. 当节点v的 ...

随机推荐

  1. 一个C#开发者学习SpringCloud搭建微服务的心路历程

    前言 Spring Cloud很火,很多文章都有介绍如何使用,但对于我这种初学者,我需要从创建项目开始学起,所以这些文章对于我的启蒙,帮助不大,所以只好自己写一篇文章,用于备忘. SpringClou ...

  2. P4588 [TJOI2018]数学计算 (线段树)

    用线段树维护操作序列,叶子结点存要乘的数,非叶子结点存区间乘积,每次输出tr[1] 就是答案. 1 #include<bits/stdc++.h> 2 #define ll long lo ...

  3. OpenAPI 接口幂等实现

    OpenAPI 接口幂等实现 1.幂等性是啥? 进行一次接口调用与进行多次相同的接口调用都能得到与预期相符的结果. 通俗的讲,创建资源或更新资源的操作在多次调用后只生效一次. 2.什么情况会需要保证幂 ...

  4. ElasticSearch之Quick.ElasticSearch.Furion组件的使用

    ElasticSearch 使用说明 本章,我们主要讲解在.Net 中对Quick.ElasticSearch.Furion的使用进行介绍! ElasticSearch 的官方客户端 API 文档地址 ...

  5. The XOR Largest Pair(字典树)

    ​ 题目描述 在给定的 N 个整数 A1,A2,-,AN 中选出两个进行异或运算,得到的结果最大是多少? 输入格式 第一行一个整数 N. 第二行 N 个整数 Ai. 输出格式 一个整数表示答案. 样例 ...

  6. 部署RAID 10

    额外添加4块硬盘,用于搭建RAID 10 检查linux的磁盘 [root@local-pyyu ~]# fdisk -l |grep '/dev/sd[a-z]' 磁盘 /dev/sda:21.5 ...

  7. 河北首家城商行传统核心业务国产化,TDSQL突破三“最”为秦皇岛银行保驾护航

    11 月 1 日,秦皇岛银行新一代分布式核心系统成功投产并稳定安全运行超过三个月,标志着秦皇岛银行数字化转型应用和服务水平登上了一个新台阶. 这是秦皇岛银行有史以来规模最大.范围最广.难度最高的一次系 ...

  8. 重新整理 .net core 实践篇 ———— linux上性能排查 [外篇]

    前言 该文的前置篇为: https://www.cnblogs.com/aoximin/p/16839830.html 本文介绍性能排查. 正文 上一节是出现错误了,如何去排查具体问题. 这一节介绍一 ...

  9. (线段树) P4588 数学计算

    小豆现在有一个数 x,初始值为 1.小豆有 QQ 次操作,操作有两种类型: 1 m:将 x变为 x × m,并输出 x mod M 2 pos:将 x 变为 x 除以第 pos次操作所乘的数(保证第  ...

  10. Electron是什么以及可以做什么

    新用户购买<Electron + Vue 3 桌面应用开发>,加小册专属微信群,参与群抽奖,送<深入浅出Electron>.<Electron实战>作者签名版. 1 ...