CSP 前学习珂学,祝自己 \(while(1)\ rp++\)。


考虑求解出每种数对答案的贡献。

设 \(t=r-l+1,k_x=\sum\limits_{i=l}^r [a_i=x]\),由容斥得贡献为 \(x(2^t-2^{t-k_x})\)。

求解 \(k_x\),考虑莫队,时间复杂度为 \(O(n\sqrt n)\),这也是本题的复杂度上限。

由于 \(p\) 会变,所以不能用莫对维护 \(2^i\)。我们希望答案的计算次数级别为 \(O(\sqrt n)\),考虑根号分治:

  • 对于出现次数 \(\le \sqrt n\) 的数,我们用数组 \(num_i\) 统计,表示当前子串出现次数为 \(i\) 的数之和为多少。可以表示为: \(num_i=\sum\limits_{j=1}^{10^5}[k_j=i]\times j\),时间复杂度 \(O(\sqrt n)\)。

  • 对于出现次数 \(>\sqrt n\) 的数,我们直接维护它们的 \(k_i\)。由于这种数的个数级别为 \(O(\sqrt n)\),所以也没问题。

现在只需要考虑快速幂的问题。普通快速幂肯定是不行了,时间复杂度会多一只 \(\log\)。考虑预处理可以给到 \(O(\sqrt n)\),选择光速幂。

时间复杂度 \(O(\sqrt n)\)。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e5+5;
int n,m,kl,a[N],l=1,r,ans[N];
struct que{int l,r,p,id;}q[N];
int cmp(que x,que y){
if(x.l/kl!=y.l/kl)
return x.l/kl<y.l/kl;
if(x.l/kl%2) return x.r>y.r;
return x.r<y.r;
}int pw1[N],pw2[N],p;
void init(int c){
p=c,pw1[0]=pw2[0]=1;
for(int i=1;i<=kl;i++)
pw1[i]=pw1[i-1]*2%p;
for(int i=1;i<=kl;i++)
pw2[i]=pw2[i-1]*pw1[kl]%p;
}int kpow(int y){
return pw1[y%kl]*pw2[y/kl]%p;
}int num[N],sum[N],vis[N],b[N],id;
void add(int x){
sum[x]++;
if(vis[x]) return;
num[sum[x]-1]-=x;
num[sum[x]]+=x;
}void del(int x){
sum[x]--;
if(vis[x]) return;
num[sum[x]+1]-=x;
num[sum[x]]+=x;
}signed main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m,kl=sqrt(n)+1;
for(int i=1;i<=n;i++)
cin>>a[i],num[a[i]]++;
for(int i=1;i<=1e5;i++){
if(num[i]>kl)
b[++id]=i,vis[i]=1;
num[i]=0;
}for(int i=1;i<=m;i++)
cin>>q[i].l>>q[i].r>>q[i].p,q[i].id=i;
sort(q+1,q+m+1,cmp);
for(int i=1;i<=m;i++){
init(q[i].p);int ij=q[i].id;
while(r<q[i].r) add(a[++r]);
while(r>q[i].r) del(a[r--]);
while(l>q[i].l) add(a[--l]);
while(l<q[i].l) del(a[l++]);
for(int j=1;j<=id;j++)
ans[ij]=(ans[ij]+b[j]*(kpow(r-l+1)-kpow(r-l+1-sum[b[j]])))%p;
for(int j=1;j<=kl;j++)
ans[ij]=(ans[ij]+num[j]*(kpow(r-l+1)-kpow(r-l+1-j)))%p;
ans[ij]=(ans[ij]+p)%p;
}for(int i=1;i<=m;i++)
cout<<ans[i]<<"\n";
return 0;
}

[Ynoi2015] 盼君勿忘 题解的更多相关文章

  1. 题解 P5072 【[Ynoi2015] 盼君勿忘】

    在太阳西斜的这个世界里,置身天上之森.等这场战争结束之后,不归之人与望眼欲穿的众人, 人人本着正义之名,长存不灭的过去.逐渐消逝的未来.我回来了,纵使日薄西山,即便看不到未来,此时此刻的光辉,盼君勿忘 ...

  2. [Ynoi2015]盼君勿忘

    题目大意: 给定一个序列,每次查询一个区间\([l,r]\)中所有子序列分别去重后的和\(\bmod p\)(每次询问模数不同). 解题思路: 在太阳西斜的这个世界里,置身天上之森.等这场战争结束之后 ...

  3. 【题解】Luogu P5072 [Ynoi2015]盼君勿忘

    众所周知lxl是个毒瘤,Ynoi道道都是神仙题,题面好评 原题传送门 一看这题没有修改操作就知道这是莫队题 我博客里对莫队的简单介绍 既然是莫队,我们就要考虑每多一个数或少一个数对答案的贡献是什么 假 ...

  4. Luogu P5072 [Ynoi2015]盼君勿忘

    题意 给定一个长度为 \(n\) 的序列 \(a\) 和 \(m\) 次询问,第 \(i\) 次询问需要求出 \([l_i,r_i]\) 内所有子序列去重之后的和,对 \(p_i\) 取模. \(\t ...

  5. 洛谷P5072 [Ynoi2015]盼君勿忘 [莫队]

    传送门 辣鸡卡常题目浪费我一下午-- 思路 显然是一道莫队. 假设区间长度为\(len\),\(x\)的出现次数为\(k\),那么\(x\)的贡献就是\(x(2^{len-k}(2^k-1))\),即 ...

  6. P5072 [Ynoi2015]盼君勿忘

    传送门 一开始理解错题意了--还以为是两个子序列相同的话只算一次--结果是子序列里相同的元素只算一次-- 对于一个区间\([l,r]\),设其中\(x\)出现了\(k\)次,那么它的贡献就是它的权值乘 ...

  7. 洛谷:P5072 [Ynoi2015]盼君勿忘

    原题地址:https://www.luogu.org/problem/P5072 题目简述 给定一个序列,每次查询一个区间[l,r]中所有子序列分别去重后的和mod p 思路 我们考虑每个数的贡献.即 ...

  8. 【洛谷5072】[Ynoi2015] 盼君勿忘(莫队)

    点此看题面 大致题意: 一个序列,每次询问一个区间\([l,r]\)并给出一个模数\(p\),求模\(p\)意义下区间\([l,r]\)内所有子序列去重后值的和. 题意转化 原来的题意看起来似乎很棘手 ...

  9. Luogu5072 [Ynoi2015]盼君勿忘 【莫队】

    题目描述:对于一个长度为\(n\)的序列,\(m\)次询问\(l,r,p\),计算\([l,r]\)的所有子序列的不同数之和\(\mathrm{mod} \ p\). 数据范围:\(n,m,a_i\l ...

  10. EC笔记:第二部分:12、复制对象时勿忘其每一个成分

    EC笔记:第二部分:12.复制对象时勿忘其每一个成分 1.场景 某些时候,我们不想使用编译器提供的默认拷贝函数(包括拷贝构造函数和赋值运算符),考虑以下类定义: 代码1: class Point{ p ...

随机推荐

  1. HarmonyOS Next 入门实战 - 导航框架:页面路由、组件导航(Navigation)

    页面路由 官方不推荐使用页面路由,这里仅做简单介绍. 页面路由用于标识 @Entry 注解的页面间的跳转. 包引入 import { router } from'@kit.ArkUI'; 页面跳转 r ...

  2. Net中手写 事件总线 发布订阅消息

    Net 手写 事件总线 发布订阅消息 前言 今晚打老虎 事件总线是对发布-订阅模式的一种实现.它是一种集中式事件处理机制,允许不同的组件之间进行彼此通信而又不需要相互依赖,达到一种解耦的目的.(项目的 ...

  3. 18号CSS学习

    一.CSS简介  1.HTML局限性 只关注内容的语义. "丑" 2.CSS-网页的美容师 CSS是层叠样式表的简称,也称为CSS样式表或级联样式表. 主要用于设置HTML页面中的 ...

  4. manim边做边学--淡入淡出

    本篇介绍Manim中的淡入和淡出动画效果. 淡入FadeIn 主要用于让对象以渐变的方式在场景中显现. 它的特点是视觉上柔和过渡,能自然地引导观众注意新出现的元素. 淡出FadeOut 则是使对象逐渐 ...

  5. CVE-2023-3390 Linux 内核 UAF 漏洞分析与利用

    漏洞分析 漏洞成因是 nf_tables_newrule 在异常分支会释放 rule 和 rule 引用的匿名 set ,但是没有设置 set 的状态为 inactivate,导致批处理中后面的请求还 ...

  6. Nuget Reference 丢失问题

    现象 在 Visual Studio 2017 中创建一个控制台项目.创建出来的项目如下所示. 通过 NuGet 管理器,添加 Newtonsoft.Json 的 NuGet 包,安装之后,项目中添加 ...

  7. 所有 HTML attribute - prop 对照表

    attr global tags prop aria-activedescendant true all   aria-atomic true all   aria-autocomplete true ...

  8. OpenLens 6.3.0 无法查案日志和进入 Pod Shell 解决方法

    原因 OpenLens 6.3.0开始移除了Pod的查看日志和进入Pod Shell按钮,无法查看日志和进入Pod操作. 解决办法 OpenLens 6.3.0开始这两个功能以插件形式提供,需下载op ...

  9. Qt/C++音视频开发72-倍速推流/音视频同步倍速推流/不改变帧率和采样率/低倍速和高倍速

    一.前言 最近多了个新需求,需要倍速推流,推流界的扛把子obs也有倍速推流功能,最高支持到两倍速.这里所说的倍速,当然只限定在文件,只有文件才可能有倍速功能,因为也只有文件才能倍速解码播放.实时视频流 ...

  10. Qt编写物联网管理平台35-实时曲线

    一.前言 设备采集到的数据,通过曲线展示也是一种非常好的方式,尽管之前已经有了表格数据展示.设备面板展示.设备地图展示等,实时曲线也是一种不错的方式,这个用户自由选择,反正通过端口已经拿到了所有要采集 ...