liblinear使用总结
liblinear是libsvm的线性核的改进版本,专门适用于百万数据量的分类。正好适用于我这次数据挖掘的实验。
liblinear用法和libsvm很相似,我是用的是.exe文件,利用python的subprocess向控制台发送命令即可完成本次试验。
其中核心两句即
train train.txt
predict test.txt train.txt.model output.txt
由于是线性核,没有设置参数c、g
对于50W篇文章模型训练仅需340秒,50W篇文章的预测仅需6秒
from subprocess import *
import time time = time.time start_time = time()
print("训练")
cmd = "train train.txt"
Popen(cmd, shell = True, stdout = PIPE).communicate()
print("训练结束",str(time() - start_time)) start_time = time()
print("预测")
cmd = "predict test.txt train.txt.model output.txt"
Popen(cmd, shell = True).communicate()
print("预测结束",str(time() - start_time)) #进行统计
#读测试集真实label
start_time = time()
print("统计")
test_filename = "test.txt"
f = open(test_filename,"r",encoding = "utf-8")
real_class = []
for line in f:
real_class.append(line[0]) #总样本
total_sample = len(real_class) #读预测结果label
predict_filename = "output.txt"
f_predict = open(predict_filename,"r",encoding = "utf-8")
s = f_predict.read()
predict_class = s.split() #对预测正确的文章进行计数
T = 0
for real, predict in zip(real_class,predict_class):
if int(real) == int(predict):
T += 1
accuracy = T / total_sample * 100
print("正确率 为", str(accuracy) + "%") # class_label = ["0","1","2","3","4","5","6","7","8","9"]
num_to_cate = {0:"it",1:"体育",2:"军事",3:"金融",4:"健康",5:"汽车",6:"房产",7:"文化",8:"教育",9:"娱乐"} class_label = ["it","体育","军事","金融","健康","汽车","房产","文化","教育","娱乐"] predict_precision = dict.fromkeys(class_label,1.0)
predict_true = dict.fromkeys(class_label,1.0) predict_recall = dict.fromkeys(class_label,1.0)
predict_F = dict.fromkeys(class_label,0.0)
# print(str(predict_precision))
# print(str(predict_precision))
# print(str(predict_recall))
# print(str(predict_true))
mat = dict.fromkeys(class_label,{})
for k,v in mat.items():
mat[k] = dict.fromkeys(class_label,0) # print(str(mat)) for real, predict in zip(real_class,predict_class):
real = int(real)
predict = int(predict)
# print(num_to_cate[real])
# print(num_to_cate[predict])
mat[num_to_cate[real]][num_to_cate[predict]] += 1
predict_precision[num_to_cate[predict]] += 1
predict_recall[num_to_cate[real]] += 1 if int(real) == int(predict):
predict_true[num_to_cate[predict]] += 1 # print(str(predict_precision))
# print(str(predict_recall))
# print(str(predict_true)) #输出混淆矩阵
for k, v in mat.items():
print(k + ":" + str(v)) #计算精确率和召回率
for x in range(len(class_label)):
# x = str(x)
predict_precision[num_to_cate[x]] = predict_true[num_to_cate[x]] / predict_precision[num_to_cate[x]]
predict_recall[num_to_cate[x]] = predict_true[num_to_cate[x]] / predict_recall[num_to_cate[x]] # print(str(predict_precision))
# print(str(predict_recall))
# print(str(predict_true)) #计算F测度
for x in range(len(class_label)):
# x = str(x)
predict_F[num_to_cate[x]] = 2 * predict_recall[num_to_cate[x]] * predict_precision[num_to_cate[x]] / (predict_precision[num_to_cate[x]] + predict_recall[num_to_cate[x]]) print("统计结束",str(time() - start_time))
print("精确率为",str(predict_precision))
print("召回率为",str(predict_recall))
print("F测度为",str(predict_F)) print("保存结果")
final_result_filename = "./finalresult.txt"
f = open(final_result_filename,"w",encoding = "utf-8")
for k, v in mat.items():
f.write(k + ":" + str(v) + "\n") f.write("\n")
f.write("正确率为" + str(accuracy) + "%" + "\n\n")
f.write("精确率为" + str(predict_precision) + "\n\n")
f.write("召回率为" + str(predict_recall) + "\n\n")
f.write("F测度为" + str(predict_F) + "\n\n")
print("保存结果结束") # cate_to_num = {"it":0,"体育":1,"军事":2,"华人":3,"国内":4,"国际":5,"房产":6,"文娱":7,"社会":8,"财经":9}
# num_to_cate = {0:"it",1:"体育",2:"军事",3:"华人",4:"国内",5:"国际",6:"房产",7:"文娱",8:"社会",9:"财经"}
liblinear使用总结的更多相关文章
- LibLinear(SVM包)使用说明之(一)README
转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.c ...
- LibLinear(SVM包)使用说明之(三)实践
LibLinear(SVM包)使用说明之(三)实践 LibLinear(SVM包)使用说明之(三)实践 zouxy09@qq.com http://blog.csdn.net/zouxy09 我们在U ...
- LibLinear(SVM包)使用说明之(二)MATLAB接口
LibLinear(SVM包)使用说明之(二)MATLAB接口 LibLinear(SVM包)使用说明之(二)MATLAB接口 zouxy09@qq.com http://blog.csdn.net/ ...
- LibLinear(SVM包)的MATLAB安装
LibLinear(SVM包)的MATLAB安装 1 LIBSVM介绍 LIBSVM是众所周知的支持向量机分类工具包(一些支持向量机(SVM)的开源代码库的链接及其简介),运用方便简单,其中的核函数( ...
- Liblinear and Libsvm-rank训练数据的bash代码
Liblinear and Libsvm-rank训练数据的bash代码: for j in "amazon_mp3" "video_surveillance" ...
- 学习笔记23—window10 64位 python2.7 安装liblinear
最近在使用pythin,因为要使用libsvm,所以到官网去下载libsvm.官网地址为libsvm(https://www.csie.ntu.edu.tw/~cjlin/libsvm/)结果下载下来 ...
- liblinear和libsvm区别
来源于知乎: 1. LibLinear是线性核,LibSVM可以扩展到非线性核(当也能用线性核,但同样在线性核条件下会比LibLinear慢很多).2. 多分类:LibLinear是one vs al ...
- liblinear参数及使用方法(原创)
开发语言:JAVA 开发工具:eclipse (下载地址 http://www.eclipse.org/downloads/) liblinear版本:liblinear-1.94.jar (下载地址 ...
- Libsvm和Liblinear的使用经验谈
原文:http://blog.sina.com.cn/s/blog_5b29caf7010127vh.html Libsvm和Liblinear都是国立台湾大学的Chih-Jen Lin博士开发的,L ...
随机推荐
- Ubuntu中的在文件中查找和替换命令
分类: 9.Linux技巧2009-09-29 13:40 1429人阅读 评论(0) 收藏 举报 ubuntujdbc 1.查找 find /home/guo/bin -name /*.txt | ...
- maven 打包zip,jsw相关
参考链接: https://blog.csdn.net/masson32/article/details/51802732
- fabric运维
fabric中文文档:http://fabric-chs.readthedocs.io/zh_CN/chs/ 视频教程:http://study.163.com/course/courseMain.h ...
- C#正则表达式类Match和Group类的理解
正则表达式可以看做一种有特定功能的小型编程语言,在一段文本中定位子字符串.利用正则表达式可以快速地分析大量的文本以找到特定的字符模式:提取.编辑.替换或删除文本子字符串:或将提取的字符串添加到集合.正 ...
- DataTable数据统计方法
调用方法: public object Compute(string strExpression,string strFilter) 参数说明: strExpression:要计算的表达式字符串,基本 ...
- python3.6 安装第三方库 pyCryptodome 实现AES加密
起因 前端日子写完的Python入库脚本,通过直接读取配置文件的内容(包含了数据库的ip,数据库的用户名,数据库的密码),因为配置文件中的数据库密码是明文显示的,所以不太安全,由此对其进行加密. 编码 ...
- Arduino显示PM2.5
这代码一般都是复制过来,在小改下就行了 代码如下: #include <Wire.h> #include <LiquidCrystal_I2C.h> #include < ...
- react native 之 事件监听 和 回调函数
同原生一样,react native 同样也有事件监听和回调函数这玩意. 场景很多,比如:A界面push到B界面,B界面再pop回A界面,可以给A界面传值或者告诉A刷新界面. 事件监听 事件监听类似于 ...
- 神州数码RIP协议认证
实验要求:掌握RIP协议的简单认证及MD5认证 拓扑如下 简单认证 R1 enable 进入特权模式 config 进入全局模式 hostname R1 修改名称 interface s0/1 进入 ...
- SQL注入之Sqli-labs系列第九关和第十关(基于时间盲注的注入)
开始挑战第九关(Blind- Time based- Single Quotes- String)和第十关( Blind- Time based- Double Quotes- String) gog ...