G - Line of Sight
来源poj2074
An architect is very proud of his new home and wants to be sure it can be seen by people passing by his property line along the street. The property contains various trees, shrubs, hedges, and other obstructions that may block the view. For the purpose of this problem, model the house, property line, and obstructions as straight lines parallel to the x axis:

To satisfy the architect's need to know how visible the house is, you must write a program that accepts as input the locations of the house, property line, and surrounding obstructions and calculates the longest continuous portion of the property line from which the entire house can be seen, with no part blocked by any obstruction.
Input
Because each object is a line, it is represented in the input file with a left and right x coordinate followed by a single y coordinate:
< x1 > < x2 > < y >
Where x1, x2, and y are non-negative real numbers. x1 < x2
An input file can describe the architecture and landscape of multiple houses. For each house, the first line will have the coordinates of the house. The second line will contain the coordinates of the property line. The third line will have a single integer that represents the number of obstructions, and the following lines will have the coordinates of the obstructions, one per line.
Following the final house, a line "0 0 0" will end the file.
For each house, the house will be above the property line (house y > property line y). No obstruction will overlap with the house or property line, e.g. if obstacle y = house y, you are guaranteed the entire range obstacle[x1, x2] does not intersect with house[x1, x2].
Output
For each house, your program should print a line containing the length of the longest continuous segment of the property line from which the entire house can be to a precision of 2 decimal places. If there is no section of the property line where the entire house can be seen, print "No View".
Sample Input
2 6 6
0 15 0
3
1 2 1
3 4 1
12 13 1
1 5 5
0 10 0
1
0 15 1
0 0 0
Sample Output
8.80
No View
cnm,什么垃圾poj,我debug半天没有找出来,然后不知道干嘛,瞎弄就过了,真的是;
求一下哪些地方不能看到,然后把能看到的最大长度写下就可以
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<stack>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
typedef long double ld;
const ll mod=1e9+100;
const double E=exp(1.0);
const double EPS=1e-6;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
struct tnt
{
double x1,x2,y;
double left,right;
}h,a[1005],line;
void solve(int n)
{
rep(i,0,n)
{
if(h.y<=a[i].y||a[i].y<=line.y)
{
a[i].left=a[i].right=-1;
continue;
}
double du1=(h.x2-a[i].x1)/(h.y-a[i].y),du2=(h.x1-a[i].x2)/(h.y-a[i].y);
a[i].left=a[i].x1-du1*(a[i].y-line.y);
a[i].right=a[i].x2-du2*(a[i].y-line.y);
}
}
bool cmp(tnt a,tnt b) { return a.left<b.left;}
int main()
{
int n;
while(~sf("%lf%lf%lf",&h.x1,&h.x2,&h.y))
{
if(h.x1+h.x2+h.y==0) return 0;
sf("%lf%lf%lf",&line.x1,&line.x2,&line.y);
cin>>n;
rep(i,0,n)
sf("%lf%lf%lf",&a[i].x1,&a[i].x2,&a[i].y);
solve(n);
sort(a,a+n,cmp);
double last=0;
double len=0;
rep(i,0,n)
{
if(a[i].right <0||a[i].left >line.x2)continue;
if(a[i].left>last)
{
len=max(len,a[i].left-last);
last=a[i].right;
}else
last=max(last,a[i].right);
}
if(line.x2 >last)
len=max(len,line.x2-last);
if(len==0) pf("No View\n");
else pf("%.2lf\n",len+EPS);
}
}
G - Line of Sight的更多相关文章
- Poj 2074 Line of Sight
地址:http://poj.org/problem?id=2074 题目: Line of Sight Time Limit: 1000MS Memory Limit: 30000K Total ...
- unity下的Line of Sight(LOS)的绘制
先说说什么是Linf of Sight.在很多RTS游戏中,单位与单位之间的视野关系经常会受到障碍物遮挡.Line of Sight指的就是两个物体之间是否没有障碍物遮挡. 比如在dota中,玩家的视 ...
- 【转】Using Raycasts and Dynamically Generated Geometry to Create a Line of Sight on Unity3D
http://www.linkedin.com/pulse/using-raycasts-dynamically-generated-geometry-create-line-thomas José ...
- 【转】unity下的Line of Sight(LOS)的绘制
http://www.cnblogs.com/yangrouchuan/p/6366629.html 先说说什么是Linf of Sight.在很多RTS游戏中,单位与单位之间的视野关系经常会受到障碍 ...
- 简单几何(直线求交点) POJ 2074 Line of Sight
题目传送门 题意:从一条马路(线段)看对面的房子(线段),问连续的能看到房子全部的最长区间 分析:自己的思路WA了:先对障碍物根据坐标排序,然后在相邻的障碍物的间隔找到区间,这样还要判断是否被其他障碍 ...
- poj 2074 Line of Sight 计算几何
/** 大意:给定一个建筑--水平放置,给定n个障碍物, 给定一条街道,从街道上能看到整个建筑的最长的连续的区域 思路: 分别确定每一个障碍物所确立的盲区,即----建筑物的终点与障碍物的起点的连线, ...
- POJ2074:Line of Sight——题解
http://poj.org/problem?id=2074 题目大意:(下面的线段都与x轴平行)给两条线段,一个点在其中一条线段看另一条线段,但是中间有很多线段阻挡视线.求在线段上最大连续区间使得在 ...
- [poj] 2074 Line of Sight || 直线相交求交点
原题 给出一个房子(线段)的端点坐标,和一条路的两端坐标,给出一些障碍物(线段)的两端坐标.问在路上能看到完整房子的最大连续长度是多长. 将障碍物按左端点坐标排序,然后用房子的右端与障碍物的左端连线, ...
- POJ2074 Line of Sight
嘟嘟嘟 题意:用一条水平线段表示以栋房子:\((x_0, y_0)(x_0', y_0)\).然后有一条低于房子的水平线段\(l_0\),代表你可以到的位置.接下来输入一个数\(n\),一下\(n\) ...
随机推荐
- jquery所有版本下载外链地址
jquery-2.1.1 (注!jquery-2.0以上版本不再支持IE 6/7/8) 百度引用地址 (推荐目前最稳定的,不会出现延时打不开情况) 百度压缩版引用地址: <script src= ...
- 【Zookeeper】源码分析之请求处理链(四)之FinalRequestProcessor
一.前言 前面分析了SyncReqeustProcessor,接着分析请求处理链中最后的一个处理器FinalRequestProcessor. 二.FinalRequestProcessor源码分析 ...
- 70个注意的Python小Notes
Python读书笔记:70个注意的小Notes 作者:白宁超 2018年7月9日10:58:18 摘要:在阅读python相关书籍中,对其进行简单的笔记纪要.旨在注意一些细节问题,在今后项目中灵活运用 ...
- CAP Twelve Years Later: How the "Rules" Have Changed
The CAP theorem asserts that any networked shared-data system can have only two of three desirable ...
- 基于Centos体验自然语言处理 by PHP SDK
系统要求:CentOS 7.2 64 位操作系统 准备工作 获取 SecretId 和 SecretKey1 前往 密钥管理 页面获取你的 SecretId 和 SecretKey 信息,这些信息将会 ...
- 【Linux】linux/unix下telnet提示Escape character is '^]'的意义
在linux/unix下使用telnet hostname port连接上主机后会提示Escape character is '^]' 这个提示的意思是按Ctrl + ] 会呼出telnet的命令行, ...
- 【CLR】解析CLR的托管堆和垃圾回收
目录结构: contents structure [+] 为什么使用托管堆 从托管堆中分配资源 托管堆中的垃圾回收 垃圾回收算法 代 垃圾回收模式 垃圾回收触发条件 强制垃圾回收 监视内存 对包装了本 ...
- 12C -- ORA-12850: 无法在所有指定实例上分配从属进程: 需要 2, 已分配 1
使用客户端连接到oracle 12.2.0.1 rac数据库,报以下错误信息: ORA-12850: 无法在所有指定实例上分配从属进程: 需要 2, 已分配 1 因为没有mos账号,只好谷歌一下了.找 ...
- asp.net C# int 类型在32/64位环境下取值范围无变化
最近在学习中突然想到,我在64位环境下,int取值范围是否有变化?为了检测这个结果,我做了以下这个测试:1.环境:win7旗舰版64位+vs2010 sp1(版本号:10.0.40219.1SP1Re ...
- Atitit 手机图片备份解决方案attilax总结
Atitit 手机图片备份解决方案attilax总结 1.1. 图片分类 相机图片与app图片1 1.2. 增量备份,只能使用按照时间法备份..1 1.3. 备份工具选型1 1.4. App图片,只好 ...