P4294 [WC2008]游览计划

斯坦纳树

斯坦纳树,是一种神奇的树。它支持在一个连通图上求包含若干个选定点的最小生成树

前置算法:spfa+状压dp+dfs(大雾)


我们设$f[o][P]$为第$o$个点上状态为$P$的最小代价,其中状态使用二进制存储已经连接了多少个选定点。

初始化:显然对于每个选定点,$f[o][1<<k]=0$,$k$为该选定点在所有选定点中的编号。其他为$inf$


蓝后就是将状态从小到大枚举进行递推

$for(P=0;P<(1<<k);++P)$

对于每层递推,枚举所有点$1$~$o$;

我们先考虑这个点连接了2个不同连通块(链)的状况(并为spfa做好准备

于是我们枚举$P$的真子集进行递推

$for(j=(P-1)\&P;j;j=(j-1)\&P)$

枚举真子集↑

$f[o][P]=min(f[o][P],f[o][j]+f[o][P$^$j]-val[o]);$

注意该式适用于计算点权,减去$val[o]$是去掉重复点权。如果计算边权需作修改。


但是这样显然远远不够。于是我们用$spfa$通过类似$dp$的形式处理好剩下的所有状况。

对于前面的$f[o][P]$,任何$f[o][P]<inf$都应作为每层spfa的起点(显然spfa也是每层执行)


在共$K$个给定点中,随意找一个给定点作为树根$rt$。

$ans=f[rt][(1<<K)-1]$


对于本题$(extra)$:输出一种方案

我们在每次更新$f[o][P]$时

用$fa[o][P]$记下$f[o][P]$从哪个状态推导而来

最后从树根$rt$用$dfs$倒推回去,更新答案即可。

void dfs(pii u,int o){//u:坐标
par G=fa[F(u)][o];
if(!G.se) return;
use[u.fi][u.se]=;
if(G.fi==u) dfs(u,o^G.se);//两个联通块合并而来,则要从两条路递推回去。
dfs(G.fi,G.se);
}

$code:$

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef pair<int,int> pii;
typedef pair<pii,int> par;
#define mp make_pair
#define fi first
#define se second
int d1[]={,,,-};
int d2[]={,,-,};
int n,m,tot,k,inf,f[][],id[][],a[][];
bool in[][],use[][];
par fa[][]; pii rt;
queue <pii> h;
inline int F(pii x){return id[x.fi][x.se];}
void spfa(int o){
while(!h.empty()){
pii x=h.front(); h.pop(); in[x.fi][x.se]=;
for(int i=;i<;++i){
int r1=x.fi+d1[i],r2=x.se+d2[i],to=id[r1][r2];
if(r1<||r1>=n||r2<||r2>=m) continue;
if(f[to][o]>f[F(x)][o]+a[r1][r2]){
f[to][o]=f[F(x)][o]+a[r1][r2];
fa[to][o]=mp(x,o);
if(!in[r1][r2]) h.push(mp(r1,r2));
}
}
}
}
void dfs(pii u,int o){//逆推找可行方案
par G=fa[F(u)][o];
if(!G.se) return;
use[u.fi][u.se]=;//选择点u
if(G.fi==u) dfs(u,o^G.se);
dfs(G.fi,G.se);
}
int main(){
memset(f,,sizeof(f)); inf=f[][];
scanf("%d%d",&n,&m);
for(int i=;i<n;++i)
for(int j=;j<m;++j){
scanf("%d",&a[i][j]);
id[i][j]=++tot;
if(!a[i][j]) rt=mp(i,j),f[tot][<<k]=,++k;
}
for(int P=;P<(<<k);spfa(P),++P)//每层递推的最后来一次spfa
for(int x=;x<n;++x)
for(int y=;y<m;++y){
int o=id[x][y];
for(int j=(P-)&P;j;j=(j-)&P)//枚举真子集
if(f[o][P]>f[o][j]+f[o][P^j]-a[x][y]){
f[o][P]=f[o][j]+f[o][P^j]-a[x][y];
fa[o][P]=mp(mp(x,y),j);
}
if(f[o][P]<inf) h.push(mp(x,y)),in[x][y]=;//可行点都能spfa
}
printf("%d\n",f[F(rt)][(<<k)-]); dfs(rt,(<<k)-);
for(int i=;i<n;++i,printf("\n"))
for(int j=;j<m;++j){
if(!a[i][j]) printf("x");
else if(use[i][j]) printf("o");
else printf("_");
}
return ;
}

bzoj2595 / P4294 [WC2008]游览计划的更多相关文章

  1. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  2. 【BZOJ2595】 [Wc2008]游览计划

    BZOJ2595 [Wc2008]游览计划 Solution 考虑这是一个最小费用连通性的问题,既然大家都说这是什么斯坦纳树那就是的吧... 所以我们肯定可以这样设一个dp状态: \(dp_{i,j, ...

  3. luogu P4294 [WC2008]游览计划

    LINK:游览计划 斯坦纳树例题. 斯坦纳树是这样一类问题:带权无向图上有K个关键点 求出包含这K个点的最小生成树. 也就是说 求最小生成树 但是 并不是整张图 仅限于K个点. 可以发现我们利用克鲁斯 ...

  4. 洛谷 P4294 [WC2008]游览计划

    题目链接 不是很会呢,但似乎抄了题解后有点明白了 sol:状态DP显然,其实是要构建一棵最小生成树一样的东西,我自己的理解(可能不是很对哦希望多多指教)f[x][y][zt]就是到x,y这个点,状态为 ...

  5. BZOJ2595:[Wc2008]游览计划——题解(插头dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2595 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行 ...

  6. P4294 [WC2008]游览计划

    传送门 斯坦纳树 给一个联通图,求 $k$ 个关键点联通的最小生成树权值 设 $f[o][i]$ 表示当前关键点选择状态为 $o$ ,以点 $i$ 为根的树的最小权值 初始 $f[1<<( ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*

    BZOJ2595 Wc2008 游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个 ...

  9. BZOJ_2595_[Wc2008]游览计划_斯坦纳树

    BZOJ_2595_[Wc2008]游览计划_斯坦纳树 题意: 分析: 斯坦纳树裸题,有几个需要注意的地方 给出矩阵,不用自己建图,但枚举子集转移时会算两遍,需要减去当前点的权值 方案记录比较麻烦,两 ...

随机推荐

  1. 【LeetCode每天一题】Add Two Numbers(两链表相加)

    You are given two non-empty linked lists representing two non-negative integers. The digits are stor ...

  2. Entity Framework Code First(概要)

    EF开源项目地址:https://github.com/aspnet/EntityFramework6 MSDN :https://msdn.microsoft.com/en-us/library/a ...

  3. iOS UI进阶-4.0 地图与定位

    在移动互联网时代,移动app能解决用户的很多生活琐事,比如 导航:去任意陌生的地方 周边:找餐馆.找酒店.找银行.找电影院   在上述应用中,都用到了地图和定位功能,在iOS开发中,要想加入这2大功能 ...

  4. LeetCode83.删除排序链表中的重复的元素

    给定一个排序链表,删除所有重复的元素,使得每个元素只出现一次. 示例 1: 输入: 1->1->2 输出: 1->2 示例 2: 输入: 1->1->2->3-&g ...

  5. VS编译后直接复制DLL库文件到其他目录下

    项目目录:SourceCode\公共组件\KApiClient\ 要复制的目的目录: SourceCode\公共组件\DllLibrary\ApiClient 则在项目 KApiClient下添加如下 ...

  6. import caffe报错问题

    在搭建好的caffe环境下运行Python报错:ImportError:No module named _caffe 报错原因:由于caffe的Python环境变量未配置好 解决方案: 方法1 imp ...

  7. Unity shader学习之标准的Unity shader

    包含光照,可处理多个光源,有光照衰减和阴影的shader,代码如下: 转载请注明出处:http://www.cnblogs.com/jietian331/p/7199311.html Shader & ...

  8. python ---多进程 Multiprocessing

    和 threading 的比较 多进程 Multiprocessing 和多线程 threading 类似, 他们都是在 python 中用来并行运算的. 不过既然有了 threading, 为什么 ...

  9. 5.无监督学习-DBSCAN聚类算法及应用

    DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1 ...

  10. 32网络通信之Poll模型

    多路复用并发模型  -- poll #include<poll.h> int  poll(struct pollfd *fds,  unsigned int nfds, int timeo ...