题意:

快递到了:你是某个岛国(ACM-ICPC Japan)上的一个苦逼程序员,你有一个当邮递员的好基友利腾桑遇到麻烦了:全岛有一些镇子通过水路和旱路相连,走水路必须要用船,在X处下船了船就停在X处。而且岛上只有一条船,下次想走水路还是得回到X处才行;两个镇子之间可能有两条以上的水路或旱路;邮递员必须按照清单上的镇子顺序送快递(镇子可能重复,并且对于重复的镇子不允许一次性处理,比如ABCB的话B一定要按顺序走两次才行)。

测试数据有多组:

N M

x1 y1 t1 sl1

x2 y2 t2 sl2

xM yM tM slM

R

z1 z2zR

N (2 ≤ N ≤ 200) 是镇子的数量,M (1 ≤ M ≤ 10000) 是旱路和水路合计的数量。从第2行到第M + 1行是路径的描述,路径连接xi yi两地,路径花费 ti (1 ≤ ti ≤ 1000)时间,sli 为L时表示是旱路,S时表示是水路。可能有两条及以上路径连接两个镇子,并且路径都是双向的。

M + 2行的R是利腾需要去的镇子的数量,M + 3是利腾需要去的镇子的编号。

初始状态利腾和船都在第一个镇子,且肯定有方法达到需要去的镇子。

测试数据为0 0的时候表示终止。

思路:

先用Floyd预处理出单独走水路s或陆路l的两两之间的最短路。

d[i][j]表示到序列第i点时船停在j,已经去了第i个镇子后,船停在第j个镇子里的状态下的最短路。

状态转移:人从a到b,船从c到d,若船动加上l[a,c]+s[c,d]+l[d,b],若船不动则只要加上l[a][b]。

然后ijk三重循环更新dp,其中递推公式思路:

在推导ik的时候,定义一个中间状态j表示先从i-1走旱路到j,然后从j走水路去k,最后从k走旱路去i,于是就把船扔在了k。

如果j==k的时候就不需要绕圈子了。

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; int s[210][210];//水路
int l[210][210];//陆路
int d[1010][210];//dp
int b[1010];//目标路线 const int INF = 0x3f3f3f3f; void Floyd(int n)
{
for (int k = 1; k <= n; ++k)
{
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= n; ++j)
{
s[i][j] = min(s[i][j], s[i][k] + s[k][j]);
l[i][j] = min(l[i][j], l[i][k] + l[k][j]);
}
}
}
} int main()
{
int n, m, r;
int u, v, c;
char tp[2]; while (scanf("%d%d", &n, &m) != EOF && n)
{
memset(s, INF, sizeof(s));
memset(l, INF, sizeof(l));
memset(d, INF, sizeof(d)); while (m--)
{
scanf("%d%d%d%s", &u, &v, &c, tp);
if (tp[0] == 'L')
{
l[u][v] = min(l[u][v], c);
l[v][u] = min(l[v][u], c);
}
else
{
s[u][v] = min(s[u][v], c);
s[v][u] = min(s[v][u], c);
}
} for (int i = 1; i <= n; ++i)
{
l[i][i] = 0;
s[i][i] = 0;
} scanf("%d", &r); for (int i = 1; i <= r; ++i)
{
scanf("%d", &b[i]);
} Floyd(n); for (int i = 1; i <= n; ++i)
{
d[1][i] = min(d[1][i], s[b[1]][i] + l[i][b[1]]);
} for (int i = 1; i <= r; ++i)
{
for (int j = 1; j <= n; ++j)
{
//if (l[j][b[i]] >= INF) continue; //剪枝
for (int k = 1; k <= n; ++k)
{
//if (d[i - 1][k] >= INF) continue; //剪枝
if (j == k)
{
if (l[b[i - 1]][b[i]] < INF)
{
d[i][j] = min(d[i][j], d[i - 1][k] + l[b[i - 1]][b[i]]);
}
}
else
{
//三个INF相加可能上溢
if (l[b[i - 1]][k] < INF && s[k][j] < INF && l[j][b[i]] < INF)
{
d[i][j] = min(d[i][j], d[i - 1][k] + l[b[i - 1]][k] + s[k][j] + l[j][b[i]]);
}
}
}
}
} int ans = INF;
for (int j = 1; j <= n; ++j)
{
ans = min(ans, d[r][j]);
}
printf("%d\n", ans);
}
return 0;
}

AOJ 2200 Mr. Rito Post Office (floyd+DP)的更多相关文章

  1. AOJ 2200 Mr. Rito Post Office(Floyd+单调DP)

    [题目链接] http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2200 [题目大意] 一张图中有陆路和水路,水路必须要有船才能走,当船 ...

  2. AOJ 2200 Mr. Rito Post Office

    Mr. Rito Post Office Time Limit : 8 sec, Memory Limit : 65536 KB Problem D: Mr. Rito Post Office あなた ...

  3. Aizu - 2200 Mr. Rito Post Office

    题意:/*你是某个岛国(ACM-ICPC Japan)上的一个苦逼程序员,你有一个当邮递员的好基友利腾桑遇到麻烦了:全岛有一些镇子通过水路和旱路相连,走水路必须要用船,在X处下船了船就停在X处.而且岛 ...

  4. Mr. Rito Post Office [Aizu-2200] [图论] [DP]

    题意:你是某个岛国(ACM-ICPC Japan )上的一个苦逼程序员,你有一个当邮递员的好基友利腾桑遇到麻烦了:全岛有一些镇子通过水路和旱路相连,走水路必须要用船,在X处下船了船就停在X处.而且岛上 ...

  5. ACdreamOJ 1154 Lowbit Sum (数字dp)

    ACdreamOJ 1154 Lowbit Sum (数位dp) ACM 题目地址:pid=1154" target="_blank" style="color ...

  6. poj2342 Anniversary party (树形dp)

    poj2342 Anniversary party (树形dp) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9128   ...

  7. 「SDOI2016」储能表(数位dp)

    「SDOI2016」储能表(数位dp) 神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\) \(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 ...

  8. 【HDU1693】Eat the Trees(插头dp)

    [HDU1693]Eat the Trees(插头dp) 题面 HDU Vjudge 大概就是网格图上有些点不能走,现在要找到若干条不相交的哈密顿回路使得所有格子都恰好被走过一遍. 题解 这题的弱化版 ...

  9. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

随机推荐

  1. 浅谈分词算法(5)基于字的分词方法(bi-LSTM)

    目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...

  2. Mybatis 学习总结

    1 Mybatis入门 1.1 单独使用jdbc编程问题总结 1.1.1 jdbc程序 public static void main(String[] args) { Connection conn ...

  3. android当前网络连接类型判断

    package net.nyist.netState; import android.content.Context; import android.net.ConnectivityManager; ...

  4. C++11 多线程编程

    http://blog.csdn.net/column/details/ccia.html?&page=1

  5. python学习之argparse模块

    python学习之argparse模块 一.简介: argparse是python用于解析命令行参数和选项的标准模块,用于代替已经过时的optparse模块.argparse模块的作用是用于解析命令行 ...

  6. ARM40-A5应用——fbset与液晶屏参数的适配【转】

    转自:https://blog.csdn.net/vonchn/article/details/80784579 ARM40-A5应用——fbset与液晶屏参数的适配 2018.6.18 版权声明:本 ...

  7. 记录entityframework生成的sql语句

    Interceptors (EF6.1 Onwards) Starting with EF6.1 you can register interceptors in the config file. I ...

  8. maven名词解释

    Maven名词解释 Project:任何你想build的事物,Maven都可以认为它们是工程.这些工程被定义为工程对象模型(POM,Poject Object Model).一个工程可以依赖其它的工程 ...

  9. Project Euler Problem7

    10001st prime Problem 7 By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see t ...

  10. jdk写webservice

    jdk写webservice 1.定义一个需要发布的类,使用@WebService注解. 2.需要发布的方法可以不用@WebMethod注解,如果需要改变访问方法名,可用@WebMethod修改. 3 ...