Description

A common pastime for poker players at a poker table is to shuffle stacks of chips. Shuffling chips is performed by starting with two stacks of poker chips, S1 and S2, each stack containing C chips. Each stack may contain chips of several different colors.

The actual shuffle operation is performed by interleaving a chip from S1 with a chip from S2 as shown below for C = 5:

The single resultant stack, S12, contains 2 * C chips. The bottommost chip of S12 is the bottommost chip from S2. On top of that chip, is the bottommost chip from S1. The interleaving process continues taking the 2nd chip from the bottom of S2 and placing that on S12, followed by the 2nd chip from the bottom of S1 and so on until the topmost chip from S1 is placed on top of S12.

After the shuffle operation, S12 is split into 2 new stacks by taking the bottommost C chips from S12 to form a new S1 and the topmost C chips from S12 to form a new S2. The shuffle operation may then be repeated to form a new S12.

For this problem, you will write a program to determine if a particular resultant stack S12 can be formed by shuffling two stacks some number of times.

Input

The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.

Each dataset consists of four lines of input. The first line of a dataset specifies an integer C, (1 ≤ C ≤ 100) which is the number of chips in each initial stack (S1 and S2). The second line of each dataset specifies the colors of each of the C chips in stack S1, starting with the bottommost chip. The third line of each dataset specifies the colors of each of the C chips in stack S2 starting with the bottommost chip. Colors are expressed as a single uppercase letter (A through H). There are no blanks or separators between the chip colors. The fourth line of each dataset contains 2 * C uppercase letters (A through H), representing the colors of the desired result of the shuffling of S1 and S2 zero or more times. The bottommost chip’s color is specified first.

Output

Output for each dataset consists of a single line that displays the dataset number (1 though N), a space, and an integer value which is the minimum number of shuffle operations required to get the desired resultant stack. If the desired result can not be reached using the input for the dataset, display the value negative 1 (−1) for the number of shuffle operations.

Sample Input

2
4
AHAH
HAHA
HHAAAAHH
3
CDE
CDE
EEDDCC

Sample Output

1 2
2 -1

大致题意:输入一个N,表示有N组数据,每组数据有四行,第一行是一个整数C,表示 每堆牌的数量,接下来是三行字符序列,第一行是S1堆,第二行是S2堆,第三行S12是预想的排序序列,求需要几步才能到达预想序列。

已知两堆牌s1和s2的初始状态, 其牌数均为c,按给定规则能将他们相互交叉组合成一堆牌s12,再将s12的最底下的c块牌归为s1,最顶的c块牌归为s2,依此循环下去。现在输入s1和s2的初始状态 以及 预想的最终状态s12.问s1 s2经过多少次洗牌之后,最终能达到状态s12,若永远不可能相同,则输出"-1"。

思路就是过程模拟,感觉最机智的就是用map<string,bool>vis,来标记字符序列了。

 #include <iostream>
#include <cstring>
#include <map>
using namespace std;
const int maxn=;
char s1[maxn],s2[maxn];
char s12[maxn<<]; //预想的牌的状态
int main()
{
int n,c,cnt=;
cin>>n;
while(n--)
{
cin>>c;
cin>>s1>>s2>>s12;
int step=;
map<string,bool>vis;
vis[s12]=true;
while()
{
char temp[maxn<<];
int k=;
for(int i=;i<c;i++) //把s1和s2按照错乱顺序放到临时变量中
{
temp[k++]=s2[i];
temp[k++]=s1[i];
}
temp[k++]='\0';
step++;
if(strcmp(temp,s12)==) //如果和预设匹配,就输出步数
{
cout<<++cnt<<' '<<step<<endl;
break;
}
else if(vis[temp]&&strcmp(temp,s12)!=) //如果成环了,表示无法匹配了,输出-1
{
cout<<++cnt<<' '<<-<<endl;
break;
}
vis[temp]=true; //标记这个序列出现过
strncpy(s1,temp,c); //把temp数组的钱c个字符放进s1
strncpy(s2,temp+c,c); //把temp数组下面c个字符放进s2
s1[c]=s2[c]='\0';
// cout<<"--"<<s1<<"--"<<s2<<endl;
}
}
return ;
}

poj 3087 Shuffle'm Up (模拟过程)的更多相关文章

  1. POJ 3087 Shuffle'm Up (模拟+map)

    题目链接:http://poj.org/problem?id=3087 题目大意:已知两堆牌s1和s2的初始状态, 其牌数均为c,按给定规则能将他们相互交叉组合成一堆牌s12,再将s12的最底下的c块 ...

  2. POJ 3087 Shuffle'm Up 模拟,看着不像搜索啊

    题意:给定s1,s1两副扑克,顺序从下到上.依次将s2,s1的扑克一张一张混合.例如s1,ABC; s2,DEF. 则第一次混合后为DAEBFC. 然后令前半段为s1, 后半段为s2. 如果可以变换成 ...

  3. POJ.3087 Shuffle'm Up (模拟)

    POJ.3087 Shuffle'm Up (模拟) 题意分析 给定两个长度为len的字符串s1和s2, 接着给出一个长度为len*2的字符串s12. 将字符串s1和s2通过一定的变换变成s12,找到 ...

  4. POJ 3087 Shuffle'm Up(洗牌)

    POJ 3087 Shuffle'm Up(洗牌) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 A common pas ...

  5. DFS POJ 3087 Shuffle'm Up

    题目传送门 /* 题意:两块扑克牌按照顺序叠起来后,把下半部分给第一块,上半部给第二块,一直持续下去,直到叠成指定的样子 DFS:直接模拟搜索,用map记录该字符串是否被搜过.读懂题目是关键. */ ...

  6. POJ 3087 Shuffle'm Up

    Shuffle'm Up Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  7. poj 3087 Shuffle'm Up ( map 模拟 )

    题目:http://poj.org/problem?id=3087 题意:已知两堆牌s1和s2的初始状态, 其牌数均为c,按给定规则能将他们相互交叉组合成一堆牌s12,再将s12的最底下的c块牌归为s ...

  8. POJ 3087 Shuffle&#39;m Up(模拟)

    Shuffle'm Up Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7404   Accepted: 3421 Desc ...

  9. POJ 3087 Shuffle'm Up【模拟/map/string】

    Shuffle'm Up Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14471 Accepted: 6633 Descrip ...

随机推荐

  1. Kettle在windows下分布式集群的搭建

    集群的搭建 我这里用的是kettle7.1版本的 下载解压 我们打开kettle的安装目录,进入到data-integration->pwd目录,找到carte-config-master-80 ...

  2. attr 和 prop 的区别

    在高版本的jquery引入prop方法后,什么时候该用prop?什么时候用attr?它们两个之间有什么区别?这些问题就出现了. 关于它们两个的区别,网上的答案很多.这里谈谈我的心得,我的心得很简单: ...

  3. CentOS7 YUM安装与配置 MySQL5.7

    原文链接:http://blog.csdn.net/xyang81/article/details/51759200 安装环境:CentOS7 64位,MySQL5.7 1.配置YUM源 在MySQL ...

  4. java 栈 最大深度

      1. 概述 某公司面试,总监大叔过来,问了图论及栈的最大深度,然后^_^ 一直记着,今天搞一下 2. 代码 package com.goodfan.test; public class JavaS ...

  5. Python学习笔记---切片 列表 元祖 字典 集合

    列表[1,2,3,2]#[] 元祖(1,2,3,2)#() 字典{1:2,3:2}#{} 集合{1,2,3,2}#{} 1,集合与列表的区别,集合里不能有重复元素 2.字典与集合的区别,都是用花括号表 ...

  6. T-SQL中的APPLY用法

    原文出处:http://www.sqlservercentral.com/articles/Stairway+Series/121318/ 从SQL Server 2005开始,微软添加了一个新的运算 ...

  7. css:pointer-events: none

    css3新属性pointer-events: none: pointer-events: none 顾名思义,就是鼠标事件拜拜的意思.元素应用了该 CSS 属性,链接啊,点击啊什么的都变成了 “浮云牌 ...

  8. 1.Ansible安装以及配置

    本节内容以Centos7为系统环境进行讲解: 1.安装epel源,方便直接yum安装: wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun ...

  9. 深入剖析GPU Early Z优化

    最近在公司群里同事发了一个UE4关于Mask材质的优化,比如在场景中有大面积的草和树的时候,可以在很大程度上提高效率.这其中的原理就是利用了GPU的特性Early Z,但是它的做法跟我最开始的理解有些 ...

  10. xadmin 常见错误

    版本: Django==2.0.5 xadmin==0.6.1 djangorestframework==3.9.0 1.No module named 'django.core.urlresolve ...