Ikki's Story I - Road Reconstruction
Time Limit: 2000MS   Memory Limit: 131072K
Total Submissions: 7971   Accepted: 2294

Description

Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.

Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.

He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?

Input

The input contains exactly one test case.

The first line of the test case contains two integers NM (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.

M lines follow, each line contains three integers abc, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ ab < nc ≤ 100). All the roads are directed.

Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.

Output

You should output one line consisting of only one integer K, denoting that there are K roads, reconstructing each of which will increase the network transportation capacity.

Sample Input

2 1
0 1 1

Sample Output

1

————————————————————————————————

题目大意是这样,找这样一种边的个数,就是增加该边的容量,可以使得最大流变大

思路:就时最大流关键边的判定,首先我们跑一遍最大流。然后不能枚举每条边增大然后跑最大流,这样太慢。我们可以知道,关键便一定是满流的,而且从源点到它和它到汇点一定能找出增广路,所以我们先dfs找出源点和汇点能流到哪些点,然后枚举每条边判断是否满流且源点汇点均能达到

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 800 struct node
{
int u, v, next, cap;
} edge[MAXN*MAXN];
int nt[MAXN], s[MAXN], d[MAXN], visit[MAXN],vis[MAXN];
int a[MAXN],b[MAXN];
int cnt; void init()
{
cnt = 0;
memset(s, -1, sizeof(s));
} void add(int u, int v, int c)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].cap = c;
edge[cnt].next = s[u];
s[u] = cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].cap = 0;
edge[cnt].next = s[v];
s[v] = cnt++;
} bool BFS(int ss, int ee)
{
memset(d, 0, sizeof d);
d[ss] = 1;
queue<int>q;
q.push(ss);
while (!q.empty())
{
int pre = q.front();
q.pop();
for (int i = s[pre]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if (edge[i].cap > 0 && !d[v])
{
d[v] = d[pre] + 1;
q.push(v);
}
}
}
return d[ee];
} int DFS(int x, int exp, int ee)
{
if (x == ee||!exp) return exp;
int temp,flow=0;
for (int i = nt[x]; ~i ; i = edge[i].next, nt[x] = i)
{
int v = edge[i].v;
if (d[v] == d[x] + 1&&(temp = (DFS(v, min(exp, edge[i].cap), ee))) > 0)
{
edge[i].cap -= temp;
edge[i ^ 1].cap += temp;
flow += temp;
exp -= temp;
if (!exp) break;
}
}
if (!flow) d[x] = 0;
return flow;
} int Dinic_flow(int ss,int ee)
{ int ans = 0;
while (BFS(ss, ee))
{
for (int i = 0; i <=ee; i++) nt[i] = s[i];
ans+= DFS(ss, INF, ee);
}
return ans;
} void dfs1(int n)
{ for(int i=s[n]; ~i; i=edge[i].next)
{
if(edge[i].cap>0&&!a[edge[i].v])
{
a[edge[i].v]=1;
vis[edge[i].v]=1;
dfs1(edge[i].v);
vis[edge[i].v]=0;
}
}
} void dfs2(int n)
{ for(int i=s[n]; ~i; i=edge[i].next)
{
if(edge[i^1].cap>0&&!b[edge[i].v])
{
b[edge[i].v]=1;
vis[edge[i].v]=1;
dfs2(edge[i].v);
vis[edge[i].v]=0;
}
}
} int main()
{
int n,m,u,v,c;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);
}
int ans=Dinic_flow(0,n-1);
memset(a,0,sizeof a);
memset(b,0,sizeof b);
a[0]=1;
b[n-1]=1;
dfs1(0);
dfs2(n-1);
int k=0;
for(int i=0;i<cnt;i+=2)
{
if(edge[i].cap==0&&a[edge[i].u]==1&&b[edge[i].v]==1)
k++;
}
printf("%d\n",k);
}
return 0;
}

POJ3204 Ikki's Story I - Road Reconstruction的更多相关文章

  1. POJ 3204 Ikki's Story I - Road Reconstruction

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  2. POJ3184 Ikki's Story I - Road Reconstruction(最大流)

    求一次最大流后,分别对所有满流的边的容量+1,然后看是否存在增广路. #include<cstdio> #include<cstring> #include<queue& ...

  3. POJ3204 Ikki's Story - Road Reconstruction 网络流图的关键割边

    题目大意:一个有源有汇的城市,问最少增加城市中的多少道路可以增加源到汇上各个路径上可容纳的总车流量增加. 网络流关键割边集合指如果该边的容量增加,整个网络流图中的任意从原点到汇点的路径的流量便可增加. ...

  4. POJ-3204-Ikki's Story I - Road Reconstruction(最大流)

    题意: 给一个有向图 求给那些边增加容量能增加总的流量,求边的条数 分析: 一开始求的是割边,结果wa了,那是因为有些割边增加了容量,但总的容量也不会增加 只有满流的边并且从源点汇点都有一条可扩展的路 ...

  5. poj3204Ikki's Story I - Road Reconstruction(最大流求割边)

    链接 最大流=最小割  这题是求割边集 dinic求出残余网络 两边dfs分别以源点d找到可达点 再以汇点进行d找到可达汇点的点 如果u,v为割边 那么s->u可达 v->t可达 并且为饱 ...

  6. [转] POJ图论入门

    最短路问题此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等)http://acm.pku.edu.cn/JudgeOnline/problem?id=2449题意: ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  9. BUPT2017 wintertraining(15) #3 题解

    我觉得好多套路我都不会ヘ(;´Д`ヘ) 题解拖到情人节后一天才完成,还有三场没补完,真想打死自己.( ˙-˙ ) A - 温泉旅店 UESTC - 878  题意 ​ 有n张牌,两人都可以从中拿出任意 ...

随机推荐

  1. java 性能测试框架工具-junitperf

    性能测试工具 对于 Java 开发者来说,要去学习性能测试工具未免很麻烦. 但有时候会有性能测试的需求. junitperf junitperf 就是一款为 Java 开发者设计的性能测试框架,如果你 ...

  2. Redis详解入门篇

    Redis详解入门篇 [本教程目录] 1.redis是什么2.redis的作者3.谁在使用redis4.学会安装redis5.学会启动redis6.使用redis客户端7.redis数据结构 – 简介 ...

  3. Selenium IDE录制脚本时弹出窗口的完美处理

    很多朋友录制脚本时新打开弹出窗口后无法定位元素,我也遇到同样的问题,国内没有什么好的资料,于是就阅读英文,不断尝试,感觉那个selectWindow(title)什么就是个坑,我用这种方法成功处理后得 ...

  4. 《面向对象程序设计(java)》第七周学习总结

    1.实验目的与要求 (1)进一步理解4个成员访问权限修饰符的用途: (2)掌握Object类的常用API用法: (3)掌握ArrayList类用法与常用API: (4)掌握枚举类使用方法: (5)结合 ...

  5. es6之更优雅的条件语句

    在使用JavaScript时,条件判断是经常会用到的,一些简单的判断条件还可以接受,当遇到比较复杂多重条件时就比较恶心了.这里使用es6的小技巧使判断更优雅. 1.使用 Arrary.includes ...

  6. python入门(三):循环

    1.for i in xxx xxx: 序列(列表,元祖,字符串) xxx: 可迭代对象 >>> for i in "abc": ...     print(i) ...

  7. 云笔记项目-网页端debug功能学习

    在做云笔记项目的过程中,除了服务端在eclipse中debug调试代码外,有时候需要在浏览器端也需要进行debug调试,刘老师举了一个冒泡排序算法的dubug例子,进行了讲解. 首先上浏览器端测试代码 ...

  8. ubuntu开启远程shell,开启上传下载

    需要先安装openshell-server 具体命令如下: 1.先更新下源 sudo apt-get update 2.安装openshell-server sudo apt-get install ...

  9. 大数据入门到精通14--hive 对 字符串的操作

    一.基本操作 concat(string,string,string)concat_ws(string,string,string)select customer_id,concat_ws(" ...

  10. 【Nodejs】Nodejsの環境構築

    参考URL:http://www.runoob.com/nodejs/nodejs-install-setup.html Windowにインストールする方法を紹介します. ▲ダウンロードURL:htt ...