Ikki's Story I - Road Reconstruction
Time Limit: 2000MS   Memory Limit: 131072K
Total Submissions: 7971   Accepted: 2294

Description

Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.

Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.

He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?

Input

The input contains exactly one test case.

The first line of the test case contains two integers NM (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.

M lines follow, each line contains three integers abc, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ ab < nc ≤ 100). All the roads are directed.

Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.

Output

You should output one line consisting of only one integer K, denoting that there are K roads, reconstructing each of which will increase the network transportation capacity.

Sample Input

2 1
0 1 1

Sample Output

1

————————————————————————————————

题目大意是这样,找这样一种边的个数,就是增加该边的容量,可以使得最大流变大

思路:就时最大流关键边的判定,首先我们跑一遍最大流。然后不能枚举每条边增大然后跑最大流,这样太慢。我们可以知道,关键便一定是满流的,而且从源点到它和它到汇点一定能找出增广路,所以我们先dfs找出源点和汇点能流到哪些点,然后枚举每条边判断是否满流且源点汇点均能达到

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 800 struct node
{
int u, v, next, cap;
} edge[MAXN*MAXN];
int nt[MAXN], s[MAXN], d[MAXN], visit[MAXN],vis[MAXN];
int a[MAXN],b[MAXN];
int cnt; void init()
{
cnt = 0;
memset(s, -1, sizeof(s));
} void add(int u, int v, int c)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].cap = c;
edge[cnt].next = s[u];
s[u] = cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].cap = 0;
edge[cnt].next = s[v];
s[v] = cnt++;
} bool BFS(int ss, int ee)
{
memset(d, 0, sizeof d);
d[ss] = 1;
queue<int>q;
q.push(ss);
while (!q.empty())
{
int pre = q.front();
q.pop();
for (int i = s[pre]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if (edge[i].cap > 0 && !d[v])
{
d[v] = d[pre] + 1;
q.push(v);
}
}
}
return d[ee];
} int DFS(int x, int exp, int ee)
{
if (x == ee||!exp) return exp;
int temp,flow=0;
for (int i = nt[x]; ~i ; i = edge[i].next, nt[x] = i)
{
int v = edge[i].v;
if (d[v] == d[x] + 1&&(temp = (DFS(v, min(exp, edge[i].cap), ee))) > 0)
{
edge[i].cap -= temp;
edge[i ^ 1].cap += temp;
flow += temp;
exp -= temp;
if (!exp) break;
}
}
if (!flow) d[x] = 0;
return flow;
} int Dinic_flow(int ss,int ee)
{ int ans = 0;
while (BFS(ss, ee))
{
for (int i = 0; i <=ee; i++) nt[i] = s[i];
ans+= DFS(ss, INF, ee);
}
return ans;
} void dfs1(int n)
{ for(int i=s[n]; ~i; i=edge[i].next)
{
if(edge[i].cap>0&&!a[edge[i].v])
{
a[edge[i].v]=1;
vis[edge[i].v]=1;
dfs1(edge[i].v);
vis[edge[i].v]=0;
}
}
} void dfs2(int n)
{ for(int i=s[n]; ~i; i=edge[i].next)
{
if(edge[i^1].cap>0&&!b[edge[i].v])
{
b[edge[i].v]=1;
vis[edge[i].v]=1;
dfs2(edge[i].v);
vis[edge[i].v]=0;
}
}
} int main()
{
int n,m,u,v,c;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);
}
int ans=Dinic_flow(0,n-1);
memset(a,0,sizeof a);
memset(b,0,sizeof b);
a[0]=1;
b[n-1]=1;
dfs1(0);
dfs2(n-1);
int k=0;
for(int i=0;i<cnt;i+=2)
{
if(edge[i].cap==0&&a[edge[i].u]==1&&b[edge[i].v]==1)
k++;
}
printf("%d\n",k);
}
return 0;
}

POJ3204 Ikki's Story I - Road Reconstruction的更多相关文章

  1. POJ 3204 Ikki's Story I - Road Reconstruction

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  2. POJ3184 Ikki's Story I - Road Reconstruction(最大流)

    求一次最大流后,分别对所有满流的边的容量+1,然后看是否存在增广路. #include<cstdio> #include<cstring> #include<queue& ...

  3. POJ3204 Ikki's Story - Road Reconstruction 网络流图的关键割边

    题目大意:一个有源有汇的城市,问最少增加城市中的多少道路可以增加源到汇上各个路径上可容纳的总车流量增加. 网络流关键割边集合指如果该边的容量增加,整个网络流图中的任意从原点到汇点的路径的流量便可增加. ...

  4. POJ-3204-Ikki's Story I - Road Reconstruction(最大流)

    题意: 给一个有向图 求给那些边增加容量能增加总的流量,求边的条数 分析: 一开始求的是割边,结果wa了,那是因为有些割边增加了容量,但总的容量也不会增加 只有满流的边并且从源点汇点都有一条可扩展的路 ...

  5. poj3204Ikki's Story I - Road Reconstruction(最大流求割边)

    链接 最大流=最小割  这题是求割边集 dinic求出残余网络 两边dfs分别以源点d找到可达点 再以汇点进行d找到可达汇点的点 如果u,v为割边 那么s->u可达 v->t可达 并且为饱 ...

  6. [转] POJ图论入门

    最短路问题此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等)http://acm.pku.edu.cn/JudgeOnline/problem?id=2449题意: ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  9. BUPT2017 wintertraining(15) #3 题解

    我觉得好多套路我都不会ヘ(;´Д`ヘ) 题解拖到情人节后一天才完成,还有三场没补完,真想打死自己.( ˙-˙ ) A - 温泉旅店 UESTC - 878  题意 ​ 有n张牌,两人都可以从中拿出任意 ...

随机推荐

  1. 关于element-ui日期选择器disabledDate使用心得

    实现目的: 使用type="data"类型实现具备开始日期与结束日期组件(ps:element有自带的type="daterange"类型的组件可以实现此功能) ...

  2. gdb 使用

    2018年7月27日21:05:16 —— 多进程调试 1.follow_fork_mode 作用:在fork之后跟随父进程还是子进程 可以使用 show follow_fork_mode查看再for ...

  3. windows共享文件夹权限设置

    权限设置及更改,最好在右键属性里面, 在计算机管理,共享文件夹->共享里面修改,有时候会不生效. windows的凭据修改,在用户注销后才会生效.

  4. html常见的块元素和行内元素(特别注意个别块元素不能嵌套其他块元素)

    html中常见的块元素:div.p.h1-h6.ul.ol.li.hr.table.pre等 块级元素新开启一行即使是设置了width属性也是独占一行(可设置float浮动属性调整布局).尽可能撑满父 ...

  5. JAVA Aes加解密详解

    上篇随笔留了一个问题,两种加密结果不一样? 其实是内部实现方式不一样,具体见注释 /** * 提供密钥和向量进行加密 * * @param sSrc * @param key * @param iv ...

  6. 一分钟搭建Spring Boot

    1.首先你的电脑需要安装jdk.Apache Maven.Intellij IDEA 2.新建项目  (敲重点,有的同学有没有Spring Initializr 这个请到本文章后面看安装步骤) 3.选 ...

  7. html转换pdf

    项目需求:移动端APP项目需要在手机上签订合同,将html转换成pdf格式的文件 解决方案:是用插件wkhtmltopdf; 记录用法:1.网址https://wkhtmltopdf.org/ 下载压 ...

  8. java文件转发

    实际开发情景中,有时会遇到文件需要从一台服务器发到另一台服务器的情况,比如外网发到内网,服务器之间文件同步的情况. 就可以用文件转发. 转发端代码: /** * * @param fileName 保 ...

  9. [leetcode]200. Number of Islands岛屿个数

    Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surro ...

  10. [leetcode]57. Insert Interval插入区间

    Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...