Ikki's Story I - Road Reconstruction
Time Limit: 2000MS   Memory Limit: 131072K
Total Submissions: 7971   Accepted: 2294

Description

Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.

Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.

He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?

Input

The input contains exactly one test case.

The first line of the test case contains two integers NM (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.

M lines follow, each line contains three integers abc, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ ab < nc ≤ 100). All the roads are directed.

Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.

Output

You should output one line consisting of only one integer K, denoting that there are K roads, reconstructing each of which will increase the network transportation capacity.

Sample Input

2 1
0 1 1

Sample Output

1

————————————————————————————————

题目大意是这样,找这样一种边的个数,就是增加该边的容量,可以使得最大流变大

思路:就时最大流关键边的判定,首先我们跑一遍最大流。然后不能枚举每条边增大然后跑最大流,这样太慢。我们可以知道,关键便一定是满流的,而且从源点到它和它到汇点一定能找出增广路,所以我们先dfs找出源点和汇点能流到哪些点,然后枚举每条边判断是否满流且源点汇点均能达到

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 800 struct node
{
int u, v, next, cap;
} edge[MAXN*MAXN];
int nt[MAXN], s[MAXN], d[MAXN], visit[MAXN],vis[MAXN];
int a[MAXN],b[MAXN];
int cnt; void init()
{
cnt = 0;
memset(s, -1, sizeof(s));
} void add(int u, int v, int c)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].cap = c;
edge[cnt].next = s[u];
s[u] = cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].cap = 0;
edge[cnt].next = s[v];
s[v] = cnt++;
} bool BFS(int ss, int ee)
{
memset(d, 0, sizeof d);
d[ss] = 1;
queue<int>q;
q.push(ss);
while (!q.empty())
{
int pre = q.front();
q.pop();
for (int i = s[pre]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if (edge[i].cap > 0 && !d[v])
{
d[v] = d[pre] + 1;
q.push(v);
}
}
}
return d[ee];
} int DFS(int x, int exp, int ee)
{
if (x == ee||!exp) return exp;
int temp,flow=0;
for (int i = nt[x]; ~i ; i = edge[i].next, nt[x] = i)
{
int v = edge[i].v;
if (d[v] == d[x] + 1&&(temp = (DFS(v, min(exp, edge[i].cap), ee))) > 0)
{
edge[i].cap -= temp;
edge[i ^ 1].cap += temp;
flow += temp;
exp -= temp;
if (!exp) break;
}
}
if (!flow) d[x] = 0;
return flow;
} int Dinic_flow(int ss,int ee)
{ int ans = 0;
while (BFS(ss, ee))
{
for (int i = 0; i <=ee; i++) nt[i] = s[i];
ans+= DFS(ss, INF, ee);
}
return ans;
} void dfs1(int n)
{ for(int i=s[n]; ~i; i=edge[i].next)
{
if(edge[i].cap>0&&!a[edge[i].v])
{
a[edge[i].v]=1;
vis[edge[i].v]=1;
dfs1(edge[i].v);
vis[edge[i].v]=0;
}
}
} void dfs2(int n)
{ for(int i=s[n]; ~i; i=edge[i].next)
{
if(edge[i^1].cap>0&&!b[edge[i].v])
{
b[edge[i].v]=1;
vis[edge[i].v]=1;
dfs2(edge[i].v);
vis[edge[i].v]=0;
}
}
} int main()
{
int n,m,u,v,c;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);
}
int ans=Dinic_flow(0,n-1);
memset(a,0,sizeof a);
memset(b,0,sizeof b);
a[0]=1;
b[n-1]=1;
dfs1(0);
dfs2(n-1);
int k=0;
for(int i=0;i<cnt;i+=2)
{
if(edge[i].cap==0&&a[edge[i].u]==1&&b[edge[i].v]==1)
k++;
}
printf("%d\n",k);
}
return 0;
}

POJ3204 Ikki's Story I - Road Reconstruction的更多相关文章

  1. POJ 3204 Ikki's Story I - Road Reconstruction

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  2. POJ3184 Ikki's Story I - Road Reconstruction(最大流)

    求一次最大流后,分别对所有满流的边的容量+1,然后看是否存在增广路. #include<cstdio> #include<cstring> #include<queue& ...

  3. POJ3204 Ikki's Story - Road Reconstruction 网络流图的关键割边

    题目大意:一个有源有汇的城市,问最少增加城市中的多少道路可以增加源到汇上各个路径上可容纳的总车流量增加. 网络流关键割边集合指如果该边的容量增加,整个网络流图中的任意从原点到汇点的路径的流量便可增加. ...

  4. POJ-3204-Ikki's Story I - Road Reconstruction(最大流)

    题意: 给一个有向图 求给那些边增加容量能增加总的流量,求边的条数 分析: 一开始求的是割边,结果wa了,那是因为有些割边增加了容量,但总的容量也不会增加 只有满流的边并且从源点汇点都有一条可扩展的路 ...

  5. poj3204Ikki's Story I - Road Reconstruction(最大流求割边)

    链接 最大流=最小割  这题是求割边集 dinic求出残余网络 两边dfs分别以源点d找到可达点 再以汇点进行d找到可达汇点的点 如果u,v为割边 那么s->u可达 v->t可达 并且为饱 ...

  6. [转] POJ图论入门

    最短路问题此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等)http://acm.pku.edu.cn/JudgeOnline/problem?id=2449题意: ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  9. BUPT2017 wintertraining(15) #3 题解

    我觉得好多套路我都不会ヘ(;´Д`ヘ) 题解拖到情人节后一天才完成,还有三场没补完,真想打死自己.( ˙-˙ ) A - 温泉旅店 UESTC - 878  题意 ​ 有n张牌,两人都可以从中拿出任意 ...

随机推荐

  1. [持续交付实践] pipeline使用:快速入门

    什么是pipeline 先介绍下什么是Jenkins 2.0,Jenkins 2.0的精髓是Pipeline as Code,是帮助Jenkins实现CI到CD转变的重要角色.什么是Pipeline, ...

  2. <记录>TP5 关联模型使用(嵌套关联、动态排序以及隐藏字段)

    在数据库设计中,常常会有如下这种关联模型,分类表中一条分类对应多个商品表中的商品 如果要获得分类表中每条分类 以及 对应的商品的信息,则需要先查询分类表中的数据,然后根据结果遍历查询商品表,最后把数据 ...

  3. 通过yum安装php7

    Linux下全局安装composer方法: //下载composercurl -sS https://getcomposer.org/installer | php //将composer.phar文 ...

  4. 记账本,C,Github,entity

    package entity; public class Category { private int id; private String name; private int recordNumbe ...

  5. vue 初始化data中的数据

    Object.assign(this.$data, this.$options.data());

  6. day34 并发编程之生产者消费者模型 队列

    1.守护进程(了解) """ 守护进程 表示 一个进程b 守护另一个进程a 当被守护的进程a结束后 那么b也跟着结束了 就像 皇帝驾崩 妃子殉葬 应用场景 之所以开启子进 ...

  7. 手游开发之lua的table 元表的运用

    元表在项目中的运用,其中就包括元方法这点.元方法是指__index和__newIndex,下面我总结下,更详细的例子讲解可以参考<lua程序设计 第2版>的第13章内容.长h短说,简言之有 ...

  8. 【python深入】获取对象类型及属性

    在python中,查看当前的对象所能够调用的所有方法? 查看类型可以通过type,也可以通过isinstance方法,查看属性可以通过dir() 下面是对type的介绍: ————>基本类型的判 ...

  9. 【python-dict】dict的使用及实现原理

    以下内容是针对:python源码剖析中的第五章——python中Dict对象 的读书笔记(针对书中讲到的内容进行了自己的整理,并且针对部分内容根据自己的需求进行了扩展) 一.Dict的用法 Dict的 ...

  10. [leetcode]25. Reverse Nodes in k-Group每k个节点反转一下

    Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. k  ...