自我理解贝叶斯算法也就是通过概率来判断C是属于A类还是B类,下面是具体代码(python3.5 测试通过)

文字流程解释一波

  1 )  加载训练数据和训练数据对应的类别

  2)   生成词汇集,就是所有训练数据的并集

  3)   生成训练数据的向量集,也就是只包含0和1的向量集

  4)   计算训练数据的各个概率

  5)   加载测试数据

  6)   生成测试数据的向量集

  7)   测试数据向量 * 训练数据的概率 最后求和

  8)   得出测试数据的所属类别

具体代码实现

代码实现1

from numpy import *
#贝叶斯算法 def loadDataSet():
trainData=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
labels=[0, 1, 0, 1, 0, 1] #1表示侮辱性言论,0表示正常言论
return trainData, labels #生成词汇表
def createVocabList(trainData):
VocabList = set([])
for item in trainData:
VocabList = VocabList|set(item) #取两个集合的并集
return sorted(list(VocabList)) #对结果排序后返回 #对训练数据生成只包含0和1的向量集
def createWordSet(VocabList, trainData):
VocabList_len = len(VocabList) #词汇集的长度
trainData_len = len(trainData) #训练数据的长度
WordSet = zeros((trainData_len,VocabList_len)) #生成行长度为训练数据的长度 列长度为词汇集的长度的列表
for index in range(0,trainData_len):
for word in trainData[index]:
if word in VocabList: #其实也就是,训练数据包含的单词对应的位置为1其他为0
WordSet[index][VocabList.index(word)] = 1
return WordSet #计算向量集每个的概率
def opreationProbability(WordSet, labels):
WordSet_col = len(WordSet[0])
labels_len = len(labels)
WordSet_labels_0 = zeros(WordSet_col)
WordSet_labels_1 = zeros(WordSet_col)
num_labels_0 = 0
num_labels_1 = 0
for index in range(0,labels_len):
if labels[index] == 0:
WordSet_labels_0 += WordSet[index] #向量相加
num_labels_0 += 1 #计数
else:
WordSet_labels_1 += WordSet[index] #向量相加
num_labels_1 += 1 #计数
p0 = WordSet_labels_0 * num_labels_0 / labels_len
p1 = WordSet_labels_1 * num_labels_1 / labels_len
return p0, p1 trainData, labels = loadDataSet()
VocabList = createVocabList(trainData)
train_WordSet = createWordSet(VocabList,trainData)
p0, p1 = opreationProbability(train_WordSet, labels)
#到此就算是训练完成
#开始测试
testData = [['not', 'take', 'ate', 'my', 'stupid']] #测试数据 test_WordSet = createWordSet(VocabList, testData) #测试数据的向量集
res_test_0 = []
res_test_1 = [] for index in range(0,len(p0)):
print(p0[index])
if test_WordSet[0][index] == 0:
res_test_0.append((1-p0[index]) * test_WordSet[0][index])
res_test_1.append((1-p1[index]) * test_WordSet[0][index])
else:
res_test_0.append(p0[index] * test_WordSet[0][index])
res_test_1.append(p1[index] * test_WordSet[0][index]) if sum(res_test_0) > sum(res_test_1):
print("属于0类别")
else:
print("属于1类别")

代码实现2

from numpy import *
#贝叶斯算法 def loadDataSet():
trainData=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
labels=[0, 1, 0, 1, 0, 1] #1表示侮辱性言论,0表示正常言论
return trainData, labels #生成词汇表
def createVocabList(trainData):
VocabList = set([])
for item in trainData:
VocabList = VocabList|set(item) #取两个集合的并集
return sorted(list(VocabList)) #对结果排序后返回 #对训练数据生成只包含0和1的向量集
def createWordSet(VocabList, trainData):
VocabList_len = len(VocabList) #词汇集的长度
trainData_len = len(trainData) #训练数据的长度
WordSet = zeros((trainData_len,VocabList_len)) #生成行长度为训练数据的长度 列长度为词汇集的长度的列表
for index in range(0,trainData_len):
for word in trainData[index]:
if word in VocabList: #其实也就是,训练数据包含的单词对应的位置为1其他为0
WordSet[index][VocabList.index(word)] = 1
return WordSet #计算向量集每个的概率
def opreationProbability(WordSet, labels):
WordSet_col = len(WordSet[0])
labels_len = len(labels)
WordSet_labels_0 = zeros(WordSet_col)
WordSet_labels_1 = zeros(WordSet_col)
num_labels_0 = 0
num_labels_1 = 0
for index in range(0,labels_len):
if labels[index] == 0:
WordSet_labels_0 += WordSet[index] #向量相加
num_labels_0 += 1 #计数
else:
WordSet_labels_1 += WordSet[index] #向量相加
num_labels_1 += 1 #计数
p0 = WordSet_labels_0 * num_labels_0 / labels_len
p1 = WordSet_labels_1 * num_labels_1 / labels_len
return p0, p1 trainData, labels = loadDataSet()
VocabList = createVocabList(trainData)
train_WordSet = createWordSet(VocabList,trainData)
p0, p1 = opreationProbability(train_WordSet, labels)
#到此就算是训练完成
#开始测试
testData = [['not', 'take', 'ate', 'my', 'stupid']] #测试数据 test_WordSet = createWordSet(VocabList, testData) #测试数据的向量集 res_test_0 = sum(p0 * test_WordSet)
res_test_1 = sum(p1 * test_WordSet) if res_test_0 > res_test_1:
print("属于0类别")
else:
print("属于1类别")

郑重声明下:

  第二种算法是我瞎想的,我感觉这样算也可以,可能对于当前的这种情况可以,其他情况就不一定了。两种算法前半部分都一样,只是最后的时候,方法1计算测试数据每个数出现的概率,方法2直接计算测试数据每个数发生的概率

  可能我解释的理解的也不是很到位,欢迎加Q交流 1156553820

部分参见大神的博文

  链接  https://blog.csdn.net/moxigandashu/article/details/71480251

python 贝叶斯算法的更多相关文章

  1. 朴素贝叶斯算法--python实现

    朴素贝叶斯算法要理解一下基础:    [朴素:特征条件独立   贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.]   极大似然估计 ...

  2. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  3. 利用贝叶斯算法实现手写体识别(Python)

    在开始介绍之前,先了解贝叶斯理论知识 https://www.cnblogs.com/zhoulujun/p/8893393.html 简单来说就是:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯 ...

  4. 朴素贝叶斯算法的python实现方法

    朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...

  5. 朴素贝叶斯算法的python实现

    朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...

  6. 机器学习:python中如何使用朴素贝叶斯算法

    这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...

  7. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  8. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  9. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

随机推荐

  1. 深入理解之 Android Handler

    深入理解之 Android Handler   一,相关概念 在Android中如果通过用户界面(如button)来来启动线程,然后再线程中的执行代码将状态信息输出到用户界面(如文本框),这时候就会抛 ...

  2. 剑指Offer 49. 把字符串转换成整数 (字符串)

    题目描述 将一个字符串转换成一个整数(实现Integer.valueOf(string)的功能,但是string不符合数字要求时返回0),要求不能使用字符串转换整数的库函数. 数值为0或者字符串不是一 ...

  3. XQuery:查询任何可作为 XML 形态呈现的数据,包括数据库

    XQuery 也被称为 XML Query,被设计用来查询 XML 数据. 学习这个 需要知道 HTML / XHTML XML / XML 命名空间 XPath XML 实例文档 我们将在下面的例子 ...

  4. JAVA基础部分复习(七、JAVA枚举类型使用)

    /** * java中的枚举 * 枚举(enum),是指一个经过排序的.被打包成一个单一实体的项列表.一个枚举的实例可以使用枚举项列表中任意单一项的值. * 枚举在各个语言当中都有着广泛的应用,通常用 ...

  5. 如何将docker镜像文件上传至Docker Hub

    一.Docker Hub中新建存储库 注册,登录Docker Hub之后,点击右上角Create Repository,创建存储库,如下图所示: 取个名字,我这里取名为lihui_demo.并且可以选 ...

  6. idc市场

    机房 idc服务商 ============================== 电信1.古城热线-西部数据中心于2001年正式投入运营,有经济技术开发区和高新技术产业开发区两个核心机房高新路电信广场 ...

  7. 前端 --- 5 BOM 和 DOM

    一.BOM BOM(Browser Object Model)是指浏览器对象模型, 它使 JavaScript 有能力与浏览器进行“对话”. 1. window 对象 一些常用的Window方法: ( ...

  8. python中的is和==

    is和== Python中的对象包含三要素:id.type.value id方法的返回值就是对象的内存地址其中id用来唯一标识一个对象,type标识对象的类型,value是对象的值 is 判断的是a对 ...

  9. HTTPS协议加密原理解析

    用 HTTP 协议,看个新闻还没有问题,但是换到更加严肃的场景中,就存在很多的安全风险.例如你要下单做一次支付,如果还是使用普通的 HTTP 协议,那你很可能会被黑客盯上. 比如,你发送一个请求,说我 ...

  10. 高性能网络编程之IO和NIO阻塞分析

    一.内容 1.阻塞和非阻塞是什么? 2.传统IO模型,他存在哪些阻塞点 3.NIO模型 4.对比总结 1.阻塞和非阻塞是什么? 阻塞:做某件事情,直到完成,除非超时,如果没有完成,继续等待. 非阻塞: ...