自我理解贝叶斯算法也就是通过概率来判断C是属于A类还是B类,下面是具体代码(python3.5 测试通过)

文字流程解释一波

  1 )  加载训练数据和训练数据对应的类别

  2)   生成词汇集,就是所有训练数据的并集

  3)   生成训练数据的向量集,也就是只包含0和1的向量集

  4)   计算训练数据的各个概率

  5)   加载测试数据

  6)   生成测试数据的向量集

  7)   测试数据向量 * 训练数据的概率 最后求和

  8)   得出测试数据的所属类别

具体代码实现

代码实现1

from numpy import *
#贝叶斯算法 def loadDataSet():
trainData=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
labels=[0, 1, 0, 1, 0, 1] #1表示侮辱性言论,0表示正常言论
return trainData, labels #生成词汇表
def createVocabList(trainData):
VocabList = set([])
for item in trainData:
VocabList = VocabList|set(item) #取两个集合的并集
return sorted(list(VocabList)) #对结果排序后返回 #对训练数据生成只包含0和1的向量集
def createWordSet(VocabList, trainData):
VocabList_len = len(VocabList) #词汇集的长度
trainData_len = len(trainData) #训练数据的长度
WordSet = zeros((trainData_len,VocabList_len)) #生成行长度为训练数据的长度 列长度为词汇集的长度的列表
for index in range(0,trainData_len):
for word in trainData[index]:
if word in VocabList: #其实也就是,训练数据包含的单词对应的位置为1其他为0
WordSet[index][VocabList.index(word)] = 1
return WordSet #计算向量集每个的概率
def opreationProbability(WordSet, labels):
WordSet_col = len(WordSet[0])
labels_len = len(labels)
WordSet_labels_0 = zeros(WordSet_col)
WordSet_labels_1 = zeros(WordSet_col)
num_labels_0 = 0
num_labels_1 = 0
for index in range(0,labels_len):
if labels[index] == 0:
WordSet_labels_0 += WordSet[index] #向量相加
num_labels_0 += 1 #计数
else:
WordSet_labels_1 += WordSet[index] #向量相加
num_labels_1 += 1 #计数
p0 = WordSet_labels_0 * num_labels_0 / labels_len
p1 = WordSet_labels_1 * num_labels_1 / labels_len
return p0, p1 trainData, labels = loadDataSet()
VocabList = createVocabList(trainData)
train_WordSet = createWordSet(VocabList,trainData)
p0, p1 = opreationProbability(train_WordSet, labels)
#到此就算是训练完成
#开始测试
testData = [['not', 'take', 'ate', 'my', 'stupid']] #测试数据 test_WordSet = createWordSet(VocabList, testData) #测试数据的向量集
res_test_0 = []
res_test_1 = [] for index in range(0,len(p0)):
print(p0[index])
if test_WordSet[0][index] == 0:
res_test_0.append((1-p0[index]) * test_WordSet[0][index])
res_test_1.append((1-p1[index]) * test_WordSet[0][index])
else:
res_test_0.append(p0[index] * test_WordSet[0][index])
res_test_1.append(p1[index] * test_WordSet[0][index]) if sum(res_test_0) > sum(res_test_1):
print("属于0类别")
else:
print("属于1类别")

代码实现2

from numpy import *
#贝叶斯算法 def loadDataSet():
trainData=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
labels=[0, 1, 0, 1, 0, 1] #1表示侮辱性言论,0表示正常言论
return trainData, labels #生成词汇表
def createVocabList(trainData):
VocabList = set([])
for item in trainData:
VocabList = VocabList|set(item) #取两个集合的并集
return sorted(list(VocabList)) #对结果排序后返回 #对训练数据生成只包含0和1的向量集
def createWordSet(VocabList, trainData):
VocabList_len = len(VocabList) #词汇集的长度
trainData_len = len(trainData) #训练数据的长度
WordSet = zeros((trainData_len,VocabList_len)) #生成行长度为训练数据的长度 列长度为词汇集的长度的列表
for index in range(0,trainData_len):
for word in trainData[index]:
if word in VocabList: #其实也就是,训练数据包含的单词对应的位置为1其他为0
WordSet[index][VocabList.index(word)] = 1
return WordSet #计算向量集每个的概率
def opreationProbability(WordSet, labels):
WordSet_col = len(WordSet[0])
labels_len = len(labels)
WordSet_labels_0 = zeros(WordSet_col)
WordSet_labels_1 = zeros(WordSet_col)
num_labels_0 = 0
num_labels_1 = 0
for index in range(0,labels_len):
if labels[index] == 0:
WordSet_labels_0 += WordSet[index] #向量相加
num_labels_0 += 1 #计数
else:
WordSet_labels_1 += WordSet[index] #向量相加
num_labels_1 += 1 #计数
p0 = WordSet_labels_0 * num_labels_0 / labels_len
p1 = WordSet_labels_1 * num_labels_1 / labels_len
return p0, p1 trainData, labels = loadDataSet()
VocabList = createVocabList(trainData)
train_WordSet = createWordSet(VocabList,trainData)
p0, p1 = opreationProbability(train_WordSet, labels)
#到此就算是训练完成
#开始测试
testData = [['not', 'take', 'ate', 'my', 'stupid']] #测试数据 test_WordSet = createWordSet(VocabList, testData) #测试数据的向量集 res_test_0 = sum(p0 * test_WordSet)
res_test_1 = sum(p1 * test_WordSet) if res_test_0 > res_test_1:
print("属于0类别")
else:
print("属于1类别")

郑重声明下:

  第二种算法是我瞎想的,我感觉这样算也可以,可能对于当前的这种情况可以,其他情况就不一定了。两种算法前半部分都一样,只是最后的时候,方法1计算测试数据每个数出现的概率,方法2直接计算测试数据每个数发生的概率

  可能我解释的理解的也不是很到位,欢迎加Q交流 1156553820

部分参见大神的博文

  链接  https://blog.csdn.net/moxigandashu/article/details/71480251

python 贝叶斯算法的更多相关文章

  1. 朴素贝叶斯算法--python实现

    朴素贝叶斯算法要理解一下基础:    [朴素:特征条件独立   贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.]   极大似然估计 ...

  2. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  3. 利用贝叶斯算法实现手写体识别(Python)

    在开始介绍之前,先了解贝叶斯理论知识 https://www.cnblogs.com/zhoulujun/p/8893393.html 简单来说就是:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯 ...

  4. 朴素贝叶斯算法的python实现方法

    朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...

  5. 朴素贝叶斯算法的python实现

    朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...

  6. 机器学习:python中如何使用朴素贝叶斯算法

    这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...

  7. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  8. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  9. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

随机推荐

  1. Win强制删除文件windows批处理强行删除文件

    一般情况下选中文件或文件夹可以直接删除文件,但是有些情况下例如:文件非常规命名.找不到文件位置等就无法直接删除. 针对这种情况可以用 bat批处理文件 删除,一下就是该方法的步骤 新建一个文件:*** ...

  2. 分数化小数(decimal)

    分数化小数 ①我的程序 #include<iostream>using namespace std;int main(void){ int a,b,c,kase=0; while(scan ...

  3. obspy下载地震波数据

    Retrieving Data from Data Centers(从数据中心检索数据) PS:此部分提供了使用obspy下载数据的推荐方式,但是由于数据中心和web服务在不断更新变化,所有有些建议可 ...

  4. 第十二次作业 - Beta答辩总结

    目录 前言 项目的链接与宣传 项目总结 原计划 达成情况 原因分析 [ Beta 冲刺博客链接汇总] [燃尽图] Beta版本展示 使用说明 视频展示 图片展示 答辩总结 [团队中个人的贡献比例] [ ...

  5. Linux性能监控分析命令(一)—vmstat命令详解

    一.vmstat介绍 语法格式: vmstat [-V] [-n] [-S unit] [delay [count]] -V prints version. -n causes the headers ...

  6. s21day06 python笔记

    s21day06 python笔记 一.昨日内容回顾及补充 回顾 补充 列表独有功能 reverse:反转 v = [1,2,3,4,5] v.reverse() #[5,4,3,2,1] sort: ...

  7. 启动Kernel提示Bad Data CRC

    如上图,我明明将uImage正确写入到里nandflash里面,但启动但时候就是提示bad CRC. 后来我手动执行nand read kernel想看看是不是环境变量里面的命令执行有问题,意外但被我 ...

  8. ubuntu16.04下配置apache2与php

    系统版本:ubuntu16.04 命令均在终端中输入,用浏览器测试 //安装apache2命令 sudo apt install apache2 //测试是否安装成功 浏览器地址栏输入“localho ...

  9. 转载:python list和set的性能比较+两者转换

    两者性能比较(转自http://www.linuxidc.com/Linux/2012-07/66404.htm) 本来是知道在Python中使用Set是比较高效,但是没想到竟然有这么大的差距: ~$ ...

  10. spark submit参数调优

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...