我想与大家分享一些我和我的团队在一个项目中经历的一些问题。在这个项目中,我们必须要存储和处理一个相当大的动态列表。测试人员在测试过程中,抱怨内存不足。下面介绍一个简单的方法,通过添加一行代码来解决这个问题。

图片的结果

下面我来解释一下,它是如何运行的。

首先,我们考虑一个简单的"learning"例子,创建一个Dataltem 类,该类是一个人的个人信息,例如姓名,年龄,地址等。

class DataItem(object):
   def __init__(self, name, age, address):
       self.name = name
       self.age = age
       self.address = address

初学者的问题:如何知道一个以上这样的对象占用多少内存?

首先,让我们试着解决一下:

d1 = DataItem("Alex", 42, "-")
print ("sys.getsizeof(d1):", sys.getsizeof(d1))

我们得到的答案是56bytes,这似乎占用了很少的内存,相当满意喽。那么,我们在尝试另一个包含更多数据的对象例子:

d2 = DataItem("Boris", 24, "In the middle of nowhere")
print ("sys.getsizeof(d2):", sys.getsizeof(d2))

答案仍然是56bytes,此刻,似乎我们意识到哪里有些不对?并不是所有的事情都第一眼所见那样。

  • 直觉不会让我们失望,一切都不是那么简单。Python是一种具有动态类型的非常灵活的语言,对于它的工作,它存储了大量的附加数据。它们本身占据了很多。

例如,sys.getsizeof("")返回33bytes,是的一个多达33个字节的空行!并且sys.getsizeof(1)返回24bytes,一个整个数字占用24个bytes(我想咨询C语言程序员,远离屏幕,不想在进一步阅读,以免对美观失去信心)。对于更复杂的元素,如字典,sys.getsizeof(.())返回272字节,这是针对空字典的,我不会再继续了,我希望原理是明确的,并且RAM的制造商需要出售他们的芯片。

但是,我们回到我们的DataItem类和最初的初学者的疑惑。

这个类,占多少内存?

首先,我们一小写的形式将这个类的完整内容输出:

def dump(obj):
 for attr in dir(obj):
   print("  obj.%s = %r" % (attr, getattr(obj, attr)))

这个函数将显示隐藏的“幕后”使所有Python函数(类型、继承和其他内容)都能够正常工作的内容。

结果令人印象深刻:

这一切内容占用多少内存?

下边有一个函数可以通过递归的方式,调用getsizeof函数,计算对象实际数据量。

def get_size(obj, seen=None):
   # From
   # Recursively finds size of objects
   size = sys.getsizeof(obj)
   if seen is None:
       seen = set()
   obj_id = id(obj)
   if obj_id in seen:
       return 0
# Important mark as seen *before* entering recursion to gracefully handle
   # self-referential objects
   seen.add(obj_id)
   if isinstance(obj, dict):
     size += sum([get_size(v, seen) for v in obj.values()])
     size += sum([get_size(k, seen) for k in obj.keys()])
   elif hasattr(obj, '__dict__'):
     size += get_size(obj.__dict__, seen)
   elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)):
     size += sum([get_size(i, seen) for i in obj])
   return size

让我们试一试:

d1 = DataItem("Alex", 42, "-")
print ("get_size(d1):", get_size(d1))
d2 = DataItem("Boris", 24, "In the middle of nowhere")
print ("get_size(d2):", get_size(d2))

我们获得的答案分别为460bytes和484bytes,这结果似乎是真实的。

使用这个函数,你可以进行一系列的实验。例如,我想知道如果DataItem结构放在列表中,数据将占用多少空间。get_size ([d1])函数返回532bytes,显然,这与上面说的460+的开销相同。但是get_size ([d1, d2])返回863bytes,小于以上的460 + 484。get_size ([d1, d2, d1])的结果更有趣——我们得到了871字节,只是稍微多一点,也就是说Python足够聪明,不会再次为同一个对象分配内存。

现在,我们来看一看问题的第二部分。

是否存在减少内存开销的可能呢?

是的,可以的。Python是一个解释器,我们可以在任何时候扩展我们的类,例如,添加一个新的字段:

d1 = DataItem("Alex", 42, "-")
print ("get_size(d1):", get_size(d1))
d1.weight = 66
print ("get_size(d1):", get_size(d1))

非常好,但是如果我们不需要这个功能呢?我们能强制解释器来指定类的列表对象使用__slots__命令:

class DataItem(object):
   __slots__ = ['name', 'age', 'address']
   def __init__(self, name, age, address):
       self.name = name
       self.age = age
       self.address = address

更多信息可以在文档(RTFM)中找到,其中写到“__ dict__和__weakref__”。使用__dict__节省的空间非常大”。

我们确认:是的,确实很重要,get_size (d1)返回…64字节,而不是460字节,即少7倍。另外,创建对象的速度要快20%(请参阅本文的第一个屏幕截图)。

唉,真正使用如此大的内存增益并不是因为其他开销。通过简单地添加元素,创建一个100,000的数组,并查看内存消耗:

data = []
for p in range(100000):
   data.append(DataItem("Alex", 42, "middle of nowhere"))
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('lineno')
total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f MB" % (total / (1024*1024)))

我们不使用__slots__占用内存16.8MB,使用时占用6.9MB。这个操作当然不是最好的,但是确实代码改变的最小的。(Not 7 times of course, but it’s not bad at all, considering that the code change was minimal.)

现在的缺点。激活__slots__禁止所有元素的创建,包括__dict__,这意味着,例如,一下代码将结构转换成json将不运行:

def toJSON(self):
       return json.dumps(self.__dict__)

这个问题很容易修复,它是足以产生dict编程方式,通过所有元素的循环:

def toJSON(self):
       data = dict()
       for var in self.__slots__:
           data[var] = getattr(self, var)
       return json.dumps(data)

也不可能动态给这个类添加新类变量,但是在这个例子中,这并不是必需的。

今天的最后一个测试。有趣的是整个程序需要多少内存。添加一个无限循环的程序,以便它不结束,看看Windows任务管理器中的内存消耗。

没有 __slots__:

6.9Mb 变成 27Mb … 好家伙, 毕竟, 我们节省了内存, 27Mb 代替 70 ,对于增加一行代码来说并不是一个坏的例子

注意:TraceMelc调试库使用了许多附加内存。显然,她为每个创建的对象添加了额外的元素。如果关闭它,总的内存消耗将少得多,截屏显示两个选项:

如果你想节省更多的内存呢?

这可以使用numpy库,它允许您以C样式创建结构,但是在我的例子中,它需要对代码进行更深入的细化,并且第一种方法就足够了。

奇怪的是在Habré从来没有详细分析使用__slots__,我希望本文将填补这一空缺。

结论

这篇文章似乎是一个anti-Python广告,但并不是。Python非常可靠(为了“降低”Python程序,您必须非常努力),它是一种易于阅读和方便编写代码的语言。这些优点在很多情况下都大于缺点,但是如果您需要最大的性能和效率,您可以使用像numpy这样的库,它是用C++编写的,它可以很快和高效地与数据一起工作。

Python高级技巧:用一行代码减少一半内存占用的更多相关文章

  1. 调用API函数减少c#内存占用(20+m减至1m以下)

    原文:调用API函数减少c#内存占用(20+m减至1m以下) c#虽然内置垃圾回收机制,但是并不能解决程序占用内存庞大的问题,如果我们仔细观察任务管理器,我们会发现一个程序如果最小化的时候,它所占用的 ...

  2. Python读取大文件的"坑“与内存占用检测

    python读写文件的api都很简单,一不留神就容易踩"坑".笔者记录一次踩坑历程,并且给了一些总结,希望到大家在使用python的过程之中,能够避免一些可能产生隐患的代码. 1. ...

  3. 『Spring Boot 2.4新特性』减少95%内存占用

    节省 95%的内存占用,减少 80%的启动耗时. GraalVM 是一种高性能的虚拟机,它可以显著的提高程序的性能和运行效率,非常适合微服务.最近比较火的 Java 框架 Quarkus 默认支持 G ...

  4. 简单机器学习人脸识别工具face-recognition python小试,一行代码实现人脸识别

    摘要: 1行代码实现人脸识别,1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片.其中每个人一张图片,图片以人的名字命名.2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片.3 ...

  5. python Pandas Profiling 一行代码EDA 探索性数据分析

    文章大纲 1. 探索性数据分析 代码样例 效果 解决pandas profile 中文显示的问题 1. 探索性数据分析 数据的筛选.重组.结构化.预处理等都属于探索性数据分析的范畴,探索性数据分析是帮 ...

  6. 在Python中,如何用一行代码去判定整数二进制中的连续 1

    利用字节位操作如何判断一个整数的二进制是否含有至少两个连续的1 的方法有多种,大家第一反应应该想到的是以下的第一种方法. 方法一:从头到尾遍历一遍每一位即可找出是否有连续的1存在 这个方法是最普遍的. ...

  7. 选择合适Redis数据结构,减少80%的内存占用

    redis作为目前最流行的nosql缓存数据库,凭借其优异的性能.丰富的数据结构已成为大部分场景下首选的缓存工具. 由于redis是一个纯内存的数据库,在存放大量数据时,内存的占用将会非常可观.那么在 ...

  8. 只需一行代码!Python中9大时间序列预测模型

    在时间序列问题上,机器学习被广泛应用于分类和预测问题.当有预测模型来预测未知变量时,在时间充当独立变量和目标因变量的情况下,时间序列预测就出现了. 预测值可以是潜在雇员的工资或银行账户持有人的信用评分 ...

  9. Python一行代码

    1:Python一行代码画出爱心 print]+(y*-)**-(x**(y*<= ,)]),-,-)]) 2:终端路径切换到某文件夹下,键入: python -m SimpleHTTPServ ...

随机推荐

  1. 如何破解MyEclipse 10.x

    本文以MyEclipse Professional 10.6 为例来介绍如何破解MyEclipse 10.x. 本文使用的破解补丁对MyEclipse Standard/ Professional/ ...

  2. 1091 N-自守数

    如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”.例如 3×92​2​​=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守 ...

  3. LeetCode 199 二叉树的右视图

    题目: 给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值. 示例: 输入: [1,2,3,null,5,null,4] 输出: [1, 3, 4] 解释: 1 ...

  4. 容器的注入和container设计的思想——Injection Container 理解

    为什么会出现容器的注入? 容器:顾名思义,装东西的器物. 至于spring中bean,aop,ioc等一些都只是实现的方式:具体容器哪些值得我们借鉴,我个人觉得是封装的思想.将你一个独立的系统功能放到 ...

  5. cocos-lua3.17 cocos studio lua动画使用

    这里只贴具体使用代码,资源请使用自己的. 这里的资源是cocos studio导出的lua文件,其中就有root和动画 function GameLayer:playLhAni() local ani ...

  6. js计算两个日期相差天数

    //两个时间相差天数 兼容firefox chrome var days = function(startDate) { var sdate = new Date(startDate.replace( ...

  7. Alpha冲刺4

    前言 队名:拖鞋旅游队 组长博客:https://www.cnblogs.com/Sulumer/p/9979357.html 作业博客:https://edu.cnblogs.com/campus/ ...

  8. JAVA8之Lambda表达式与方法引用表达式

    一.Lambda表达式 基本语法: lambdaParameters->lambdaBody lambdaParameters传递参数,lambdaBody用于编写逻辑,lambda表达式会生成 ...

  9. dos脚本

    关于dos命令行脚本编写   dos常用命令另查 开始之前先简单说明下cmd文件和bat文件的区别:在本质上两者没有区别,都是简单的文本编码方式,都可以用记事本创建.编辑和查看.两者所用的命令行代码也 ...

  10. 强大的拖拽组件:React DnD 的使用

    强大的拖拽组件:React DnD 的使用 react.js 10.6k 次阅读  ·  读完需要 25 分钟 17 文章首发我的个人blog : 原文链接 学习 React DnD 的最初原因是阅读 ...