1. 前言

Q-Learning算法也是时序差分算法的一种,和我们前面介绍的SARAS不同的是,SARSA算法遵从了交互序列,根据当前的真实行动进行价值估计;Q-Learning算法没有遵循交互序列,而是在当前时刻选择了使价值最大的行动。

2. Q-Learning

Q-Learning算法在计算当前时刻的行动-状态价值\(q_t(s_t,a_t)\)时选择了当前状态使价值最大的行动\(max_aq_{t-1}(s_{t})\)。

Q-Learning的迭代公式在SARAS的基础上进行了一些修改,如下:

\[q_{t}(s_{t},a_{t}) = q_{t-1}(s_{t-1},a_{t-1}) + \frac{1}{N}(r_t + \gamma*max_aq_{t-1}(s_t) - q_{t-1}(s_{t-1},a_{t-1}))
\]

3. Q-Learning代码实现

Q-Learning公式和SARAS的公式十分相像,所以策略提升依然没有变化,策略评估有一点微小的修改(完整代码GitHub)。

def q_learn_eval(self, agent, env):
state = env.reset()
prev_state = -1
prev_act = -1
while True:
act = agent.play(state, self.epsilon)
next_state, reward, terminate, _ = env.step(act)
if prev_act != -1:
# qlearning的迭代公式
return_val = reward + agent.gamma * (0 if terminate else np.max(agent.value_q[state, :]))
agent.value_n[prev_state][prev_act] += 1
agent.value_q[prev_state][prev_act] += (return_val - agent.value_q[prev_state][prev_act]) / agent.value_n[prev_state][prev_act] prev_act = act
prev_state = state
state = next_state if terminate:
break

4. SARAS和Q-Learning比较

SARSA算法和Q-Learning算法在公式上的不同,实际上这两种算法代表了两种策略评估的方式,分别是On-Policy和Off-Policy

  • On-Policy:对值函数的更新是完全依据交互序列进行的,我们在计算时认为价值可以直接使用采样的序列估计得到。
  • Off-Policy:更新值函数时并不完全遵循交互序列,而是选择来自其他策略的交互序列的子部分替换了原本的交互序列。从算法的思想上来说,Q-Learning的思想更复杂,它结合了子部分的最优价值,更像是结合了价值迭代的更新算法,希望每一次都使用前面迭代积累的最优结果进行更新。

5. 总结

对于Q-Learning和SARSA这样的时序差分算法,对于小型的强化学习问题是非常灵活有效的,但是在大数据时代,异常复杂的状态和可选动作,使Q-Learning和SARSA要维护的Q表异常的大,甚至远远超出内存,这限制了时序差分算法的应用场景。在深度学习兴起后,基于深度学习的强化学习开始占主导地位,因此从下一篇开始我们开始讨论深度强化学习的建模思路。

强化学习-Q-Learning算法的更多相关文章

  1. 增强学习(五)----- 时间差分学习(Q learning, Sarsa learning)

    接下来我们回顾一下动态规划算法(DP)和蒙特卡罗方法(MC)的特点,对于动态规划算法有如下特性: 需要环境模型,即状态转移概率\(P_{sa}\) 状态值函数的估计是自举的(bootstrapping ...

  2. 强化学习(Reinforcement Learning)中的Q-Learning、DQN,面试看这篇就够了!

    1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做,而强化学习(Reinforcement Learning, RL)是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报. ...

  3. 强化学习(Reinfment Learning) 简介

    本文内容来自以下两个链接: https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/ https: ...

  4. 强化学习(十七) 基于模型的强化学习与Dyna算法框架

    在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...

  5. 强化学习-时序差分算法(TD)和SARAS法

    1. 前言 我们前面介绍了第一个Model Free的模型蒙特卡洛算法.蒙特卡罗法在估计价值时使用了完整序列的长期回报.而且蒙特卡洛法有较大的方差,模型不是很稳定.本节我们介绍时序差分法,时序差分法不 ...

  6. 强化学习 reinforcement learning: An Introduction 第一章, tic-and-toc 代码示例 (结构重建版,注释版)

    强化学习入门最经典的数据估计就是那个大名鼎鼎的  reinforcement learning: An Introduction 了,  最近在看这本书,第一章中给出了一个例子用来说明什么是强化学习, ...

  7. 【强化学习】DQN 算法改进

    DQN 算法改进 (一)Dueling DQN Dueling DQN 是一种基于 DQN 的改进算法.主要突破点:利用模型结构将值函数表示成更加细致的形式,这使得模型能够拥有更好的表现.下面给出公式 ...

  8. 深度学习(Deep Learning)算法简介

    http://www.cnblogs.com/ysjxw/archive/2011/10/08/2201782.html Comments from Xinwei: 最近的一个课题发展到与深度学习有联 ...

  9. 强化学习9-Deep Q Learning

    之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连 ...

  10. 强化学习系列之:Deep Q Network (DQN)

    文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3. ...

随机推荐

  1. MySQL环境变量的配置

    找到mysql安装的bin目录下复制此路径: 我的电脑右击属性====>>高级系统设置==>>环境变量 找到path 单击编辑将路径粘贴到变量值的最前面,在bin后面加上英文的 ...

  2. C#中#region和#endregion的用法

    一.用法说明 #region 说明 Program1 #endregion 二.作用 (1)注释其中间的代码段 (2)折叠中间的代码块(折叠后的说明文字为#region后面的说明)

  3. 更换本地Git全局账户命令

    git config --global user.name gstok git config --global user.email @qq.com

  4. win7生成ssh key配置到gitlab

    测试服务上使用ip访问gitlab,比如http://192.168.0.2/,创建用户并登陆后创建一个项目,比如git@gitlab.demo.com:demo/helloworld.git 如果想 ...

  5. unity仿微信飞机大战项目

    开发路线: 1,游戏背景(连续播放) 2,添加主角 3,设置游戏主角的动画 4,添加两种子弹并设置子弹的运动 5,添加三种子弹 设置子弹的自动生成和运动 6,添加两种奖励物品 设置奖励物品的自动生成和 ...

  6. h5本地缓存(localStorage,sessionStorage)

    H5本地存储数据 localStorage,sessionStorage的区别: 相同点:  缓存数据比cookie的范围大; localStorage:关闭浏览器数据不会消失,除非手动删除数据 se ...

  7. selenium+PhantomJS小案例—爬豆瓣网所有电影代码python

    #coding=utf-8from selenium import webdriver def crawMovie(): driver=webdriver.PhantomJS() driver.get ...

  8. Node辅助工具NPM&REPL

    Node辅助工具NPM&REPL NPM和REPL是node的包管理器和交互式解析器,可以有效提高开发者效率 NPM npm(Node Package Manager)是node包管理器,完全 ...

  9. pygame 笔记-9 图片旋转及边界反弹

    h5或flash中,可以直接对矢量对象,比如line, rectange旋转,但是pygame中,仅支持对image旋转,本以为这个是很简单的事情,但是发现还是有很多小猫腻的,记录一下: 先看一个错误 ...

  10. JSOUP 请求JSON

    JSOUP请求JSON Document doc = Jsoup .connect(Constant.DATA_URL) .header("Accept", "*/*&q ...