题目链接

\(998244353\)写成\(99824435\)然后调这个线段树模板1.5h= =

以后要注意常量啊啊啊


\(Description\)

每个位置有一个\(3\times3\)的矩阵,要求支持区间赋值和求区间乘积。

输出答案对\(998244353\)取模后的结果。

\(n,q\leq10^5\)。

\(Solution\)

裸的线段树+矩阵快速幂是\(O(3^3q\log^2n)\)的,因为维护区间乘的话,区间赋值为矩阵\(A\)的时候要赋值\(A^{r-l+1}\),带一个快速幂。

考虑怎么把那个快速幂去掉。发现对于长度为\(n\)的线段树的区间长度只有\(O(\log n)\)种,可以预处理出\(A\)的区间次幂,直接赋值。

不同区间的长度可能比较乱,但是把线段树长度补成\(2^k\),就很容易维护了。

复杂度\(O(3^3(n+q)\log n)\)。

写了这个题的代码纯属闲...


//439ms	46MB
#include <cstdio>
#include <cctype>
#include <algorithm>
#define mod 998244353
#define gc() getchar()
#define MAXIN 300000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<17)+7,M=1e5+5,BIT=17; int ref[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read();
struct Matrix
{
int a[3][3];
inline void Read()
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j) a[i][j]=read();
}
Matrix operator *(const Matrix &x)
{
Matrix res;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
{
LL tmp=0;
for(int k=0; k<3; ++k) tmp+=1ll*a[i][k]*x.a[k][j]%mod;
res.a[i][j]=tmp%mod;
}
return res;
}
}A[N],pw[M][BIT+1];
struct Segment_Tree
{
#define ls rt<<1
#define rs rt<<1|1
#define lson l,m,ls
#define rson m+1,r,rs
#define S N<<2
int tag[S];
Matrix t[S];
#undef S
#define Upd(rt,id,l) t[rt]=pw[id][ref[l]], tag[rt]=id
#define Update(rt) t[rt]=t[ls]*t[rs]
inline void PushDown(int rt,int m)
{
Upd(ls,tag[rt],m>>1), Upd(rs,tag[rt],m>>1), tag[rt]=0;
}
void Build(int l,int r,int rt)
{
if(l==r) {t[rt]=A[l]; return;}
int m=l+r>>1; Build(lson), Build(rson), Update(rt);
}
void Modify(int l,int r,int rt,int L,int R,int id)
{
if(L<=l && r<=R) {Upd(rt,id,r-l+1); return;}
if(tag[rt]) PushDown(rt,r-l+1);
int m=l+r>>1;
if(L<=m) Modify(lson,L,R,id);
if(m<R) Modify(rson,L,R,id);
Update(rt);
}
Matrix Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return t[rt];
if(tag[rt]) PushDown(rt,r-l+1);
int m=l+r>>1;
if(L<=m)
if(m<R) return Query(lson,L,R)*Query(rson,L,R);
else return Query(lson,L,R);
return Query(rson,L,R);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
} int main()
{
#define S 1,lim,1
int n=read()-1,Q=read(),lim=1,bit=0;
for(int i=1; i<=n; ++i) A[i].Read();
while(lim<n) lim<<=1, ++bit;
for(int i=0; i<=bit; ++i) ref[1<<i]=i;
T.Build(S);
for(int t=0; Q--; )
switch(read())
{
case 1:
{
int l=read(),r=read(); pw[++t][0].Read();
for(int i=1; i<=bit; ++i) pw[t][i]=pw[t][i-1]*pw[t][i-1];
T.Modify(S,l,r,t); break;
}
case 2:
{
int l=read(),r=read();
Matrix res=T.Query(S,l,r-1); LL ans=0;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j) ans+=res.a[i][j];
printf("%d\n",(int)(ans%mod)); break;
}
} return 0;
}

Wannafly Winter Camp 2019.Day 8 div1 E.Souls-like Game(线段树 矩阵快速幂)的更多相关文章

  1. Wannafly Winter Camp 2019.Day 8 div1 I.岸边露伴的人生经验(FWT)

    题目链接 \(Description\) 给定\(n\)个十维向量\(\overrightarrow{V_i}=x_1,x_2,...,x_{10}\).定义\(\overrightarrow{V}= ...

  2. Wannafly Winter Camp 2020 Day 5C Self-Adjusting Segment Tree - 区间dp,线段树

    给定 \(m\) 个询问,每个询问是一个区间 \([l,r]\),你需要通过自由地设定每个节点的 \(mid\),设计一种"自适应线段树",使得在这个线段树上跑这 \(m\) 个区 ...

  3. 2019 牛客暑期多校 B generator 1 (矩阵快速幂+倍增)

    题目:https://ac.nowcoder.com/acm/contest/885/B 题意:给你x0,x1,让你求出xn,递推式时xn=a*xn-1+b*xn-2 思路:这个n特别大,我自己没有摸 ...

  4. 2019牛客多校第五场B-generator 1(矩阵快速幂)

    generator 1 题目传送门 解题思路 矩阵快速幂.只是平时的矩阵快速幂是二进制的,这题要用十进制的快速幂. 代码如下 #include <bits/stdc++.h> #defin ...

  5. 2019 wannafly winter camp day 3

    2019 wannafly winter camp day 3 J 操作S等价于将S串取反,然后依次遍历取反后的串,每次加入新字符a,当前的串是T,那么这次操作之后的串就是TaT.这是第一次转化. 涉 ...

  6. 2019 wannafly winter camp

    2019 wannafly winter camp Name Rank Solved A B C D E F G H I J K day1 9 5/11 O O O O O day2 5 3/11 O ...

  7. 2019 wannafly winter camp day5-8代码库

    目录 day5 5H div2 Nested Tree (树形dp) 5F div2 Kropki (状压dp) 5J div1 Special Judge (计算几何) 5I div1 Sortin ...

  8. 2020 CCPC Wannafly Winter Camp Day1 C. 染色图

    2020 CCPC Wannafly Winter Camp Day1 C. 染色图 定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任 ...

  9. 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)

    牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...

随机推荐

  1. 微信浏览器发送ajax请求执行多次解决方法

    http://www.cnblogs.com/whatlonelytear/p/8934738.html

  2. hdu3635

    /* 一开始第a个球在第a个城市 操作T a b,把第a个球所在城市的所有球移到b所在的城市 操作Q a 要求输出 第a个球在哪个城市 第a个球所在的城市有几个球 第a个球移动次数 */ #inclu ...

  3. bitset用法详解

    参见此博客: https://www.cnblogs.com/magisk/p/8809922.html

  4. node.js 的热更新

    1.安装 npm i supervisor -gd 2.运行 supervisor server.js //server.js 是你自己的服务的js文件

  5. babel-cli 的使用

    1.安装babel-cli npm i babel-cli -D 2.实现npm的初始化 npm init -y 3.配置package.json { "name": " ...

  6. js 压缩上传的图片方法(默认上传的是file文件)

    //压缩图片方法 function compressImg(file,callback){ var src; var fileSize = parseFloat(parseInt(file['size ...

  7. 【转】flannel网络的VXLAN及host-gw

    http://www.fly63.com/article/detial/1738 VXLAN是Linux内核本身支持的一种网络虚拟化技术,是内核的一个模块,在内核态实现封装解封装,构建出覆盖网络,其实 ...

  8. Centos6安装SaltStack

    rpm -ivh https://mirrors.tuna.tsinghua.edu.cn/epel/6/x86_64/epel-release-6-8.noarch.rpm yum install ...

  9. CDOJ 1960 构造哈密顿路径

    题意: 给定n个点的有向完全图,希望通过其中n-1条边将n个点串起来(2<=n<=1000) 欧拉路径:经过所有边且只经过一次 哈密顿路径:经过所有点且只经过一次 思路: 本题条件特殊,有 ...

  10. 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡

    题解: 网上有一种复杂的方法..好像复杂度并没有优势就没看 定义f[i]表示i的期望经过次数,f[i]=sigma{f[j]*p/q/du[j]}+(i==1); 然后高斯消元就可以了 最后求出来的f ...