Description

今年有 n 场 ACM-ICPC 竞赛,小明每场都有资格参加。第 i 场竞赛共有 b[i] 道题。小明预测第 i场他能做出 a[i] 道题。为了让自己看着更“大佬”一些,小明想让自己平均做出的题数越大越好,也就是最大化大佬度,大佬度的定义如下:

为了达到这个目的,小明决定放弃 k 场比赛的参赛资格。请求出最大的大佬度。

例如有 3 场小型比赛,题数分别是 5 题、1 题、6 题,小明预测自己分别能做出 5 题、0题、2题。如果每场都参加,那么大佬度是 ,看着不怎么大佬。不过,如果放弃第 3 场比赛,那么大佬度就是 ,看着更加大佬了。

Input

输入测试文件含有多组测试,每组有 3 行。第一行有 2 个整数, 1 ≤ n ≤ 1000 和 0 ≤ k < n。第二行有 n 个整数,即每个 a[i]。第三行含有 n 个正整数 b[i]。保证 0 ≤ a[i] ≤ b[i] ≤ 1, 000, 000, 000。文件末尾由 n = k = 0 标识,并且不应该被处理。

Output

对于每组测试数据,输出一行整数,即放弃 k 场比赛后可能的最高大佬度。大佬度应该舍入到最近的整数。

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Analysis

这是一个典型的01分数规划问题,什么意思?

在两个数列a,b中,选取部分出来,使得∑ai/∑bi最大

我们采用二分确定下届的方法,设∑ai/∑bi>=x

则∑(ai/(bi+x))>=0;

我们按贪心的方法,排序后选取n-m个出来,判断是否正确即可。

Code

 #include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register ll
#define rep(i,a,b) for(RG i=a;i<=b;++i)
#define per(i,a,b) for(RG i=a;i>=b;--i)
#define ll long long
#define inf (1<<29)
#define maxn 1005
#define eps 1e-7
using namespace std;
ll n,m;
struct D{
double a,b;
}dat[maxn];
double tmp[maxn];
inline ll read()
{
ll x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} double DD; inline int cmp(const D &x,const D &y)
{
return x.a-x.b*DD>y.a-y.b*DD;
} ll check(double lim)
{
DD=lim;
sort(dat+,dat++n,cmp);
double sum=;
rep(i,,m) sum+=dat[i].a-dat[i].b*lim;
return sum>=;
} int main()
{
while()
{
double l=,r=,ans=,mid;
n=read(),m=read();m=n-m;
if(!n&&!m) return ;
rep(i,,n) dat[i].a=read();
rep(i,,n) dat[i].b=read();
while(r-l>eps)
{
mid=(l+r)/2.0;
if(check(mid)) ans=mid,l=mid;
else r=mid;
}
printf("%.0f\n",ans*);
}
return ;
}

Dropping tests [POJ2976] [01分数规划]的更多相关文章

  1. POJ2976:Dropping tests(01分数规划入门)

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cum ...

  2. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  3. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  4. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

  5. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. poj2976 Dropping tests(01分数规划 好题)

    https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...

  7. POJ2976 Dropping tests(01分数规划)

    题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...

  8. POJ 2976 Dropping tests:01分数规划【二分】

    题目链接:http://poj.org/problem?id=2976 题意: 共有n场考试,每场考试你得的分数为a[i],总分为b[i]. 你可以任意去掉k场考试. 问你最大的 100.0 * ( ...

  9. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

随机推荐

  1. Java+selenium之WebDriver常见特殊情况如iframe/弹窗处理(四)

    1. iframe 的处理 查找元素必须在对应的 ifarme 中查找,否则是找不到的 // 传入参数为 frame 的序号,从0开始 driver.switchTo().frame(Int inde ...

  2. Just Oj 2017C语言程序设计竞赛高级组E: DATE ALIVE(二分匹配)

    E: DATE ALIVE 时间限制: 1 s      内存限制: 128 MB 提交 我的状态 题目描述 五河士道家里的精灵越来越多了,而每一个精灵都想和他有一个约会.然而五河士道却只有一个,无奈 ...

  3. 目标检测算法之Faster R-CNN算法详解

    Fast R-CNN存在的问题:选择性搜索,非常耗时. 解决:加入一个提取边缘的神经网络,将候选框的选取交给神经网络. 在Fast R-CNN中引入Region Proposal Network(RP ...

  4. 视频H265格式压缩,软件压缩方法,硬件的没有条件,没法测试。

    libx265软压c:/ffmpeg/ffmpeg.exe -i input.mp4 -c:v libx265 -preset:v fast output.mp4 原文件大小:610.87mb 目标文 ...

  5. python--使用递归的方式建立二叉树

    树和图的数据结构,就很有意思啦. # coding = utf-8 class BinaryTree: def __init__(self, root_obj): self.key = root_ob ...

  6. 使用Docker方式运行Mysql(MariaDB)

    两者差不多.我使用的是MariaDB. 下面的docker命令,挂了数据,配置,映射了端口,指定了root密码,服务端编码. 蛮快的! docker run \ --name mariadb \ -v ...

  7. Angularjs 学习笔记-2017-02-06-双向数据绑定

    NG: ng-bind:  标签属性 ng-bind=" obj.xxx  " ,不会出现 用于区别{{ }} 标签,当页面未加载完毕时可以看到{{}}标签,非常不雅观,ng-bi ...

  8. 1个汉字在UTF-8编码占3个字节

    http://blog.csdn.net/ns_code/article/details/14162087 http://www.ruanyifeng.com/blog/2007/10/ascii_u ...

  9. vs code 前端如何以服务器模式打开 [安装服务器] server insteall

    首先要安装 vs code 和 node.js(既然是前端就必须回,不会的面壁思过)然后在命令符中输入 npm install -g live-server 进行安装,(简单的NPM安装)安装成功后在 ...

  10. 【AtCoder】AGC015

    AGC015 A - A+...+B Problem #include <bits/stdc++.h> #define fi first #define se second #define ...