Description

今年有 n 场 ACM-ICPC 竞赛,小明每场都有资格参加。第 i 场竞赛共有 b[i] 道题。小明预测第 i场他能做出 a[i] 道题。为了让自己看着更“大佬”一些,小明想让自己平均做出的题数越大越好,也就是最大化大佬度,大佬度的定义如下:

为了达到这个目的,小明决定放弃 k 场比赛的参赛资格。请求出最大的大佬度。

例如有 3 场小型比赛,题数分别是 5 题、1 题、6 题,小明预测自己分别能做出 5 题、0题、2题。如果每场都参加,那么大佬度是 ,看着不怎么大佬。不过,如果放弃第 3 场比赛,那么大佬度就是 ,看着更加大佬了。

Input

输入测试文件含有多组测试,每组有 3 行。第一行有 2 个整数, 1 ≤ n ≤ 1000 和 0 ≤ k < n。第二行有 n 个整数,即每个 a[i]。第三行含有 n 个正整数 b[i]。保证 0 ≤ a[i] ≤ b[i] ≤ 1, 000, 000, 000。文件末尾由 n = k = 0 标识,并且不应该被处理。

Output

对于每组测试数据,输出一行整数,即放弃 k 场比赛后可能的最高大佬度。大佬度应该舍入到最近的整数。

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Analysis

这是一个典型的01分数规划问题,什么意思?

在两个数列a,b中,选取部分出来,使得∑ai/∑bi最大

我们采用二分确定下届的方法,设∑ai/∑bi>=x

则∑(ai/(bi+x))>=0;

我们按贪心的方法,排序后选取n-m个出来,判断是否正确即可。

Code

 #include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register ll
#define rep(i,a,b) for(RG i=a;i<=b;++i)
#define per(i,a,b) for(RG i=a;i>=b;--i)
#define ll long long
#define inf (1<<29)
#define maxn 1005
#define eps 1e-7
using namespace std;
ll n,m;
struct D{
double a,b;
}dat[maxn];
double tmp[maxn];
inline ll read()
{
ll x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} double DD; inline int cmp(const D &x,const D &y)
{
return x.a-x.b*DD>y.a-y.b*DD;
} ll check(double lim)
{
DD=lim;
sort(dat+,dat++n,cmp);
double sum=;
rep(i,,m) sum+=dat[i].a-dat[i].b*lim;
return sum>=;
} int main()
{
while()
{
double l=,r=,ans=,mid;
n=read(),m=read();m=n-m;
if(!n&&!m) return ;
rep(i,,n) dat[i].a=read();
rep(i,,n) dat[i].b=read();
while(r-l>eps)
{
mid=(l+r)/2.0;
if(check(mid)) ans=mid,l=mid;
else r=mid;
}
printf("%.0f\n",ans*);
}
return ;
}

Dropping tests [POJ2976] [01分数规划]的更多相关文章

  1. POJ2976:Dropping tests(01分数规划入门)

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cum ...

  2. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  3. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  4. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

  5. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. poj2976 Dropping tests(01分数规划 好题)

    https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...

  7. POJ2976 Dropping tests(01分数规划)

    题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...

  8. POJ 2976 Dropping tests:01分数规划【二分】

    题目链接:http://poj.org/problem?id=2976 题意: 共有n场考试,每场考试你得的分数为a[i],总分为b[i]. 你可以任意去掉k场考试. 问你最大的 100.0 * ( ...

  9. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

随机推荐

  1. 如何获取jar包的在执行机上面的路径

    背景: 最近在项目中遇到一个小问题, 几行代码就能解决了 String path = this.getClass().getProtectionDomain().getCodeSource().get ...

  2. 该问题是需要导包!!!需要pom中添加依赖The absolute uri: http://java.sun.com/jsp/jstl/core cannot be resolved in either web.xml or the jar files deployed with this application

    <!-- https://mvnrepository.com/artifact/org.apache.taglibs/taglibs-standard-impl --><depend ...

  3. Python(字符串操作实例1)一个字符串用空格隔开

    # 将字符中单词用空格隔开# 已知传入的字符串中只有字母,每个单词的首字母大写,# 请将每个单词用空格隔开,只保留第一个单词的首字母大写传入:“HelloMyWorld”# 返回“Hello my w ...

  4. python pop方法

    在两个地方见到了pop方法的使用,看起来是之前自己确实故略寡闻了. 在pandas的DataFrame中 import pandas as pd dataframe = pd.read_csv('ir ...

  5. Select2 多层次赋值时异步赋值的问题

    场景: 当选择人员时加载人员,选择部门时加载部门.所以在人员下,选择人员A后,如果选择部门,会触发二级select 重新获取数据. 问题: 使用select2()方法进行绑定远程数据后,对第二个sel ...

  6. error C1128: 节数超过对象文件格式限制: 请使用 /bigobj 进行编译

    VS2015出现如上错误. 默认情况下,对象文件最多可存放 65,536 (2^16) 个可寻址的节. 这种情况不管指定哪个目标平台. /bigobj 可将该地址容量增加至 4,294,967,296 ...

  7. zabbix通过shell脚本安装异常问题定位

    htxk-106主机信息现象如下: 通过zabbix_get命令 zabbix_get [7189]: Check access restrictions in Zabbix agent config ...

  8. du -h排序

    du -sh * du -s /tmp/*|sort -nr|head -3

  9. BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...

  10. tomcat多端口配置

    <?xml version="1.0" encoding="UTF-8"?> <Server port="8005" sh ...