LightOJ 1030 【概率DP求期望】
借鉴自:https://www.cnblogs.com/keyboarder-zsq/p/6216762.html 题意:n个格子,每个格子有一个值。从1开始,每次扔6个面的骰子,扔出几点就往前几步,然后把那个格子的金子拿走;
如果扔出的骰子+所在位置>n,就重新扔,直到在n;
问取走这些值的期望值是多少
解析:
【1】 【2】 【3】【4】 【5】 【6】 【7】 【8】 【9】
//格子和值都是一样,所以下述的话,值就是格子,格子就是值。。。
比如这样的9个格子,我们总底往上来
对于第9个格子,因为只有9,能取的期望就是9;
对于第8个格子,8是一定要取的,而9也是一定回取的,所以对于第8个格子,期望就是17;
对于第7个格子,7是一定要取的,对于后面可能是直接取了9,或者先取8再取9,情况是满足,对于每种情况概率是1/2,所以就是7+9/2+(8+9)/2=20;
PS:
上面的情况,在7后面的时候,我们可能取9,或者先取8,那么其实就是拿了第8个格子的期望和第9个格子期望,期望就是能取的值,然后*概率,全部情况的总和就是新的期望,有人会奇怪那7呢?我们的前提是对于第7格一定拿7啊;
对于第6个格子,那么就是6一定要拿的,然后会拿7,拿8,拿9,他们的期望*概率的总和+他能取的值就是6的第6个格子的期望;
...以此类推;
对于概率的其实一想更简单...
我们一开始就在1,概率就是1,然后扔一个骰子对于每个面的概率就是1/6,那么dp[i]代表概率,每次对能到达的地方更新概率,最后期望就是值乘以概率的总和+1,1是一定要取的哦~ 从后往前推
import java.math.BigDecimal;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.Vector; public class Main {
public static void main(String[] args) {
final int maxn = 10010;
Scanner cin = new Scanner(System.in);
int T = cin.nextInt();
int cnt = 0;
while(T-- != 0)
{
double[] dp = new double[maxn];
int n = cin.nextInt();
for(int i=1;i<=n;i++)
dp[i] = cin.nextDouble();
for(int i=n-1;i>=1;i--)
{
int k = Math.min(6, n-i);
for(int j=i+1;j<=i+k;j++)
{
dp[i] += dp[j]/(double)k;
}
}
System.out.printf("Case %d: %.10f\n",++cnt,dp[1]);
} }
}
LightOJ 1030 【概率DP求期望】的更多相关文章
- HDU3853-LOOPS(概率DP求期望)
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Total Su ...
- POJ2096 Collecting Bugs(概率DP,求期望)
Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...
- HDU-3853 LOOPS(概率DP求期望)
题目大意:在nxm的方格中,从(1,1)走到(n,m).每次只能在原地不动.向右走一格.向下走一格,概率分别为p1(i,j),p2(i,j),p3(i,j).求行走次数的期望. 题目分析:状态转移方程 ...
- lightoj 1030 概率dp
题目链接:http://lightoj.com/volume_showproblem.php?problem=1030 #include<cstdio> #include<cstri ...
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
- HDU 4405 Aeroplane chess (概率DP求期望)
题意:有一个n个点的飞行棋,问从0点掷骰子(1~6)走到n点须要步数的期望 当中有m个跳跃a,b表示走到a点能够直接跳到b点. dp[ i ]表示从i点走到n点的期望,在正常情况下i点能够到走到i+1 ...
- HDU-4035 Maze (概率DP求期望)
题目大意:在一个树形迷宫中,以房间为节点.有n间房间,每间房间存在陷阱的概率为ki,存在出口的概率为ei,如果这两种情况都不存在(概率为pi),那么只能做出选择走向下一个房间(包括可能会走向上一个房间 ...
- HDU-4405 Aeroplane chess(概率DP求期望)
题目大意:一个跳棋游戏,每置一次骰子前进相应的步数.但是有的点可以不用置骰子直接前进,求置骰子次数的平均值. 题目分析:状态很容易定义:dp(i)表示在第 i 个点出发需要置骰子的次数平均值.则状态转 ...
- hdu 4405 Aeroplane chess(简单概率dp 求期望)
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
随机推荐
- NPOI DataSet导出excel
/// <summary> /// DataSet导出到Excel的MemoryStream /// </summary> /// <param name="d ...
- 如何利用”七牛云”在UEditor实现图片的上传和浏览
在学习之前,我参考了朋友些的一篇关于这个功能实现的文章,非常不错.大家可以参考:http://www.cnblogs.com/John-Marnoon/p/5818528.html#3501846 里 ...
- .NET开发微信小程序-生成二维码 - 转
1.生成小程序二维码功能 直接请求相应的链接.传递相应的参数 以生成商铺的付款码为例: var shopsId = e.ShopsId //付款码的参数 var codeModel = new fun ...
- TopShelf 自动配置Service测试
在开发中经常会遇到后台定时处理数据和任务的情况,处理这些事情大概有以下几种方案: 1.使用数据库的job功能.优点是在数据库中可以完成的就在数据库中完成,配置等基础设施数据库都提供,简单快捷.缺点是如 ...
- item 6: 当auto推导出一个不想要的类型时,使用显式类型初始化的语法
本文翻译自<effective modern C++>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 Item 5解释了比起显式指定类型,使用auto来 ...
- Centos7下ELK+Redis日志分析平台的集群环境部署记录
之前的文档介绍了ELK架构的基础知识,日志集中分析系统的实施方案:- ELK+Redis- ELK+Filebeat - ELK+Filebeat+Redis- ELK+Filebeat+Kafka+ ...
- Swarm基于多主机容器网络 - overlay networks 梳理
前面介绍了Docker管理工具-Swarm部署记录,下面重点说下Swarm基于多主机容器通信的覆盖网络 在Docker版本1.12之后swarm模式原生支持覆盖网络(overlay networks) ...
- Tomcat通过Memcached实现session共享的完整部署记录
对于web应用集群的技术实现而言,最大的难点就是:如何能在集群中的多个节点之间保持数据的一致性,会话(Session)信息是这些数据中最重要的一块.要实现这一点, 大体上有两种方式:一种是把所有Ses ...
- Centos6.9下安装并使用VNC的操作记录
VNC是一个的"远程桌面"工具.,通常用于“图形界面”的方式登录服务器,可视化操作.废话不多说了,操作记录如下: 1)安装桌面环境 [root@vm01 ~]# yum -y gr ...
- Microsoft Visual Studio2013安装及单元测试
和大家分享一下我安装VS2013和单元测试的过程.VS是微软多种编程软件的集合,功能与工作环境更全面,相比VC++6.0来说是一个很大的提升. VS安装: VS的安装和普通软件相同,只是花费的时间很长 ...