BZOJ3522[Poi2014]Hotel——树形DP
题目描述
有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达。吉丽要给他的三个妹子各开(一个)房(间)。三个妹子住的房间要互不相同(否则要打起来了),为了让吉丽满意,你需要让三个房间两两距离相同。
有多少种方案能让吉丽满意?
输入
第一行一个数n。
接下来n-1行,每行两个数x,y,表示x和y之间有一条边相连。
输出
让吉丽满意的方案数。
样例输入
1 2
5 7
2 5
2 3
5 6
4 5
样例输出
提示
【样例解释】
{1,3,5},{2,4,6},{2,4,7},{2,6,7},{4,6,7}
【数据范围】
n≤5000
数据范围比较小,考虑O(n2)树形DP。
满足要求的情况一定是一个点往外连出三条链,这三条链的端点就是要选的点。
如果把中间那个点当做根,那么这三个点就分别是根节点3个子树上.
那么我们不妨枚举根节点,对于每个根节点枚举子树统计答案.DP方程是f[i][j]=f[i][j-1]*s[i].
其中f[i][j]表示以当前枚举的点为根时已经选了j个深度为i的点(其中1<=j<=3),s[i]则表示当前枚举的根的子树中深度为i的点的个数。
dfs完根的每棵子树转移时枚举i,j转移。但要注意j要倒序枚举,防止前面状态影响后面状态。
每dfs完一棵子树要清空s数组。最后对于每个点为根节点的答案加和就好了。
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n;
int x,y;
ll f[5010][4];
int head[5010];
int to[100010];
int next[100010];
int tot;
ll ans;
int s[50010];
int d[50010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int fa)
{
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
d[to[i]]=d[x]+1;
s[d[to[i]]]++;
dfs(to[i],x);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1;i<=n;i++)
{
memset(d,0,sizeof(d));
memset(f,0,sizeof(f));
for(int j=1;j<=n;j++)
{
f[j][0]=1;
}
for(int j=head[i];j;j=next[j])
{
memset(s,0,sizeof(s));
d[to[j]]=1;
s[1]++;
dfs(to[j],i);
for(int k=3;k>=1;k--)
{
for(int l=1;s[l];l++)
{
f[l][k]+=f[l][k-1]*s[l];
}
}
}
for(int j=1;f[j][3];j++)
{
ans+=f[j][3];
}
}
printf("%lld",ans);
}
BZOJ3522[Poi2014]Hotel——树形DP的更多相关文章
- 【BZOJ3522】[Poi2014]Hotel 树形DP
[BZOJ3522][Poi2014]Hotel Description 有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达.吉丽要给他的三个妹子各开(一个)房 ...
- 3522: [Poi2014]Hotel( 树形dp )
枚举中点x( 即选出的三个点 a , b , c 满足 dist( x , a ) = dist( x , b ) = dist( x , c ) ) , 然后以 x 为 root 做 dfs , 显 ...
- 【BZOJ3522】【BZOJ4543】【POI2014】Hotel 树形DP 长链剖分 启发式合并
题目大意 给你一棵树,求有多少个组点满足\(x\neq y,x\neq z,y\neq z,dist_{x,y}=dist_{x,z}=dist_{y,z}\) \(1\leq n\leq 1 ...
- BZOJ3522: [Poi2014]Hotel
3522: [Poi2014]Hotel Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 195 Solved: 85[Submit][Status] ...
- bzoj 3829: [Poi2014]FarmCraft 树形dp+贪心
题意: $mhy$ 住在一棵有 $n$ 个点的树的 $1$ 号结点上,每个结点上都有一个妹子. $mhy$ 从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装 $zhx$ 牌杀毒 ...
- BZOJ3522 [Poi2014]Hotel 【树形dp】
题目链接 BZOJ3522 题解 就是询问每个点来自不同子树离它等距的三个点的个数 数据支持\(O(n^2)\),可以对每个距离分开做 设\(f[i][j]\)表示\(i\)的子树中到\(i\)距离为 ...
- [POI2014]FAR-FarmCraft 树形DP + 贪心思想
(感觉洛谷上题面那一小段中文根本看不懂啊,好多条件都没讲,直接就是安装也要一个时间啊,,,明明不止啊!还好有百度翻译......) 题意:一棵树,一开始在1号节点(root),边权都为1,每个点有点权 ...
- 【BZOJ3829】[Poi2014]FarmCraft 树形DP(贪心)
[BZOJ3829][Poi2014]FarmCraft Description In a village called Byteville, there are houses connected ...
- BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)
题目好神仙--这个叫长链剖分的玩意儿更神仙-- 考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\ ...
随机推荐
- Android学习之基础知识八—Android广播机制实践(实现强制下线功能)
强制下线功能算是比较常见的了,很多的应用程序都具备这个功能,比如你的QQ号在别处登录了,就会将你强制挤下线.实现强制下线功能的思路比较简单,只需要在界面上弹出一个对话框,让用户无法进行任何操作,必须要 ...
- saltstack学习之一:服务架构以及相关配置安装运行
概要 saltstack是基于Python开发的C/S架构的一款批量管理工具,底层采用动态的连接总线(ZeroMQ消息队列pub/sub方式通信),使用ssl证书签发的方式进行认证管理,使其可以用于编 ...
- helm 部署 使用 记录
0.概念:Helm作为一个包管理工具, 它把Kubernetes资源(比如deployments.services或 ingress等) 打包到一个chart中,方便我们将其chart保存到chart ...
- pycharm 取消 rebase 操作
291/5000 取消rebase操作从主菜单中选择VCS | Git | 中止重新定位(abrot rebasing)如果rebase在两个或多个本地存储库中启动,则会显示“中止重新排序”对话框. ...
- ASP.NET Core MVC中URL和数据模型的匹配
Http GET方法 首先我们来看看GET方法的Http请求,URL参数和ASP.NET Core MVC中Controller的Action方法参数匹配情况. 我定义一个UserController ...
- Intellij实用技巧
快捷键 Tradition 快捷键 介绍 Ctrl + Z 撤销 Ctrl + Shift + Z 取消撤销 Ctrl + X 剪切 Ctrl + C 复制 Ctrl + S 保存 Tab 缩进 Sh ...
- Hive 数据的导入导出
数据的导入: 通过文件导入,使用load命令 一.导入本地文件: load data local inpath '/home/hadoop/files/emp.txt' overwrite into ...
- java线程池和中断总结
目录 java线程池和中断总结 一. 线程池的使用 二. java中断机制 中断的处理 三. 线程间通信机制总结 java线程池和中断总结 本系列文是对自己学习多线程和平时使用过程中的知识梳理,不适合 ...
- Linux下安装jdk+maven +git
Linux系统下的操作,一直不是很熟悉.作为一名java开发工程师,感到很惭愧.因此把自己的阿里云服务器安装环境相关的东西给记录下来,方便后续查阅. 本文所采用的Lin ...
- Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)...啊啊啊
函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计 ...