任何正整数都能分解成2的幂,给定整数N,求N的此类划分方法的数量!
比如N = 7时,共有6种划分方法。
 
7=1+1+1+1+1+1+1
  =1+1+1+1+1+2
  =1+1+1+2+2
  =1+2+2+2
  =1+1+1+4
  =1+2+4
 
傻逼的高精度DP,我只选Java BigInteger。
 
 import java.util.*;
import java.math.*; public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in); BigInteger N = in.nextBigInteger(); BigInteger F[][] = new BigInteger[125][125];
BigInteger G[][] = new BigInteger[125][125]; for (int i = 0; i <= 120; ++i)
for (int j = 0; j <= 120; ++j) {
F[i][j] = BigInteger.ZERO;
G[i][j] = BigInteger.ZERO;
} F[0][0] = BigInteger.ONE; for (int i = 1; i <= 120; ++i) {
F[i][i] = BigInteger.ONE; for (int j = 0; j < i; ++j)
for (int k = 0; k <= j; ++k)
F[i][j] = F[i][j].add(F[i - 1][k].multiply(F[i - k - 1][j - k]));
} int tot = 0; BigInteger TWO = BigInteger.ONE.add(BigInteger.ONE); for (int i = 0; i <= 120; ++i) {
if (N.mod(TWO).toString().charAt(0) == '1') {
if (++tot == 1) {
for (int j = 0; j <= i; ++j)
G[tot][j] = F[i][j];
}
else {
for (int j = 0; j <= i; ++j)
for (int k = 0; k <= j; ++k)
G[tot][j] = G[tot][j].add(G[tot - 1][k].multiply(F[i - k][j - k]));
}
} N = N.divide(TWO);
} BigInteger ANS = BigInteger.ZERO; for (int i = 0; i <= 120; ++i)
ANS = ANS.add(G[tot][i]); System.out.println(ANS.toString());
}
}

@Author: YouSiki

51Nod 1048 1383 整数分解为2的幂的更多相关文章

  1. 51 NOD 1383 整数分解为2的幂

    设f[i]为i这个数的划分方案,则: 1.i是奇数的时候,最前面只能放1,所以f[i] = f[i-1] 2.i是偶数的时候,最前面可以放1也可以不放1,而不放1的时候数列都是偶数所以 f[i] = ...

  2. [2022-2-18] OICLASS提高组模拟赛2 A·整数分解为2的幂

    题目链接 问题 A: 整数分解为 2 的幂 题目描述 任何正整数都能分解成 2 的幂,给定整数 N,求 N 的此类划分方法的数量!由于方案数量较大,输出 Mod 1000000007 的结果. 比如 ...

  3. 51Nod 1048 整数分解为2的幂 V2

    题目链接 分析: $O(N)$和$O(NlogN)$的做法很简单就不写了...%了一发神奇的$O(log^3n*$高精度$)$的做法... 考虑我们只能用$2$的整次幂来划分$n$,所以我们从二进制的 ...

  4. [51nod1383&1048]整数分解为2的幂:DP

    算法一 分析 \(f[x]=f[x-1]+f[x/2] \times [x \equiv 0 \mod 2],O(n)\) 代码 n=int(input()) f=[0]*(n+5) f[0]=1 m ...

  5. 整数分解 && 质因数分解

    输入整数(0-30)分解成所有整数之和.每四行换行一次. 一种方法是通过深度优先枚举出解.通过递归的方式来实现. #include <stdio.h> #include <strin ...

  6. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  7. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  8. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  9. Light OJ 1341 Aladdin and the Flying Carpet Pollard_rho整数分解+DFS

    进入a b 多少努力p, q 使p*q == a && p < q && p >= b 直接大整数分解 然后dfs所有可能的解决方案劫持 #include ...

随机推荐

  1. flask seesion组件

    一.简介     flask中session组件可分为内置的session组件还有第三方flask-session组件,内置的session组件功能单一,而第三方的flask-sessoin可支持re ...

  2. 解读tensorflow之rnn

    from: http://lan2720.github.io/2016/07/16/%E8%A7%A3%E8%AF%BBtensorflow%E4%B9%8Brnn/ 这两天想搞清楚用tensorfl ...

  3. item 2: 理解auto类型的推导

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 如果你已经读过item 1的模板类型推导,你已经知道大部分关于au ...

  4. C#_面试

    class Program { static void Main(string[] args) { , , , , }; var arry = ConvertSum(arr); , , , , , } ...

  5. Proxy基础---------获取collection接口的构造跟方法

    1----查看proxy api 2------测试代码 package cn.proxy01; import java.lang.reflect.Constructor; import java.l ...

  6. docker安装后启动出现错误

    重启报错: [root@localhost ~]# systemctl restart docker Job for docker.service failed because the control ...

  7. HTML DOM 学习笔记

    一.HTML DOM定义了所有HTML元素的对象和属性,以及访问他们的方法即:HTML DOM是关于如何获取,修改,添加,删除HTML元素的标准二.DOM节点1.分类整个文档是一个文档节点每个HTML ...

  8. HDU 2052 Picture

    http://acm.hdu.edu.cn/showproblem.php?pid=2052 Problem Description Give you the width and height of ...

  9. Oracle一次可以查询多个表的结果的方法

    select (select count(1) from gspauresult) 权限总表, (select count(1) from gspau01result) 权限总表1, (select ...

  10. [转帖] select、poll、epoll之间的区别总结[整理] + 知乎大神解答 https://blog.csdn.net/qq546770908/article/details/53082870 不过图都裂了.

    select.poll.epoll之间的区别总结[整理] + 知乎大神解答 2016年11月08日 15:37:15 阅读数:2569 http://www.cnblogs.com/Anker/p/3 ...