【题解】 bzoj1076: [SCOI2008]奖励关 (装压+期望dp)
Solution
- 并不会做,看了下题解大概了解了。期望这个东西好难搞啊qwq
- 我们定义\(dp[i][j]\)表示第\(i\)步,拿到宝物前的状态为\(j\)。
- 正着来会有很多不合法的情况,剔除比较麻烦,我们反着来考虑,因为你想如何是合法,就是状态表示拿得物品个数小于等于步数嘛,倒着来最后答案根据我们状态定义可以知道,答案是\(dp[1][0]\)嘛,然后你想,我们每向前一次,就最多剔除一个宝物,最多剔除的就是\(K\)个,其余不合法的情况到最后不会剔除完,就不会被计入答案中
- 转移方程是$$dp[i][j]=dp[i][j]+\Sigma_{k=1}^n max(dp[i+1][j],dp[i+1][j|(sta[k])+s[k]])/n$$ 这个是在\(j\)状态下能加入\(k\)物品.
- 不然转移方程就是$$dp[i][j]=dp[i][j]+dp[i+1][j]/n$$
- 多做几道期望dp,感受下吧qwq
Code
//It is coded by ning_mew on 7.21
#include<bits/stdc++.h>
#define db double
using namespace std;
const int maxk=105,maxn=20;
int n,K;
int sta[maxn],s[maxn];
db dp[maxk][(1<<15)+100];
int main(){
scanf("%d%d",&K,&n);
for(int i=1;i<=n;i++){
int box=0;
scanf("%d",&s[i]);
while(1){
scanf("%d",&box);if(!box)break;
sta[i]=(sta[i]|(1<<(box-1)));
}
}
for(int i=K;i>=1;i--){
for(int j=0;j<=(1<<n)-1;j++){
for(int k=1;k<=n;k++){
if((sta[k]&j)!=sta[k]){dp[i][j]=dp[i][j]+dp[i+1][j]/n;continue;}
dp[i][j]=dp[i][j]+1.0*max(dp[i+1][j],dp[i+1][j|(1<<(k-1))]+s[k])/n;
}
}
}printf("%0.6f\n",dp[1][0]);return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会场场比赛暴0!!!
【题解】 bzoj1076: [SCOI2008]奖励关 (装压+期望dp)的更多相关文章
- [BZOJ1076][SCOI2008]奖励关 状压dp
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3070 Solved: 1595[Submit][Statu ...
- BZOJ1076:[SCOI2008]奖励关(状压DP,期望)
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...
- bzoj 1076 奖励关 状压+期望dp
因为每次选择都是有后效性的,直接dp肯定不行,所以需要逆推. f[i][j]表示从第i次开始,初始状态为j的期望收益 #include<cstdio> #include<cstrin ...
- BZOJ 1076 奖励关(状压期望DP)
当前得分期望=(上一轮得分期望+这一轮得分)/m dp[i,j]:第i轮拿的物品方案为j的最优得分期望 如果我们正着去做,会出现从不合法状态(比如前i个根本无法达到j这种方案),所以从后向前推 如果当 ...
- 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望
[BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...
- BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 3074 Solved: 1599 [Submit][Sta ...
- bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2989 Solved: 1557[Submit][Statu ...
- 【BZOJ-1076】奖励关 概率与期望 + 状态压缩DP
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1602 Solved: 891[Submit][Status ...
- BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...
随机推荐
- Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP
传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...
- Log4j2使用笔记
log4j2是log4j的最新版,现在已经有很多公司在使用了.log4j2和log4j的优缺点对比,请自行百度. 上一篇笔记讲了关于log4j的使用.这篇笔记主要讲解log4 ...
- LiveCharts文档-3开始-8自定义工具提示
原文:LiveCharts文档-3开始-8自定义工具提示 LiveCharts文档-3开始-8自定义工具提示 默认每个需要tooltip或者legend的chart都会初始化一个DefaultLeng ...
- java基础(个人学习笔记) A
1. 声明long类型的变量 需要在数值的末尾+l/L.(不加L的话,貌似默认就是int型了.当给long赋值一个超过int范围的值的时候,会出问题.) 2. package java_ ...
- js类型----你所不知道的JavaScript系列(5)
ECMAScirpt 变量有两种不同的数据类型:基本类型,引用类型.也有其他的叫法,比如原始类型和对象类型等. 1.内置类型 JavaScript 有七种内置类型: • 空值(null) • 未定义( ...
- LDAP-openldap服务部署和测试(YUM安装)
1. 概述2. 服务端部署过程2.1 软件包说明2.2 部署过程2.3 配置过程3. 测试4. 生成LDIF格式文件4.1 安装migrationtools工具4.2 用migrationtools生 ...
- Centos下SVN环境部署记录
大多数情况下,我们日常工作中用的版本控制系统都会选择分布式的Git,它相比于集中式的SVN有很多优势.但是有些项目软件基于自身限制,可能只支持SVN做工程同步.废话就不多说了,下面记录下SVN的部署和 ...
- Python初始编码-3
01010100 新11010000 开11010100 一01100000 家11000000 看11000000 看 01010100011101110101011110110A B C01000 ...
- 2017乌鲁木齐区域赛D题Fence Building-平面图的欧拉公式
这个题B站上面有这题很完整的分析和证明,你实在不懂,可以看看这个视频 https://www.bilibili.com/video/av19849697?share_medium=android&a ...
- What is 软件工程
话说新的一学期,有一门叫软件工程的专业课,作为计算机科学与技术专业的学生,在上课前有几个问题 1.软件工程顾名思义是学软件,可是软件这个词范围还是挺大的,那到底学的是哪方面,是编程?设计APP?还是一 ...