[Mechine Learning & Algorithm] 集成学习方法——Bagging和 Boosting
使用机器学习方法解决问题时,有较多模型可供选择。 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择)
因为不同的模型具有不同的特点, 所以有时也会将多个模型进行组合,以发挥"三个臭皮匠顶一个诸葛亮的作用", 这样的思路, 反应在模型中,主要有两种思路:Bagging和Boosting
1. Bagging
Bagging 可以看成是一种圆桌会议, 或是投票选举的形式,其中的思想是:"群众的眼光是雪亮的",可以训练多个模型,之后将这些模型进行加权组合,一般这类方法的效果,都会好于单个模型的效果。 在实践中, 在特征一定的情况下,大家总是使用Bagging的思想去提升效果。 例如kaggle上的问题解决,因为大家获得的数据都是一样的,特别是有些数据已经过预处理。

以下为Data Mining Concepts and Techniques 2nd 中的伪代码

基本的思路比较简单,就是:训练时,使用replacement的sampling方法, sampling一部分训练数据k次并训练k个模型;预测时,使用k个模型,如果为分类,则让k个模型均进行分类并选择出现次数最多的类(每个类出现的次数占比可以视为置信度);如为回归,则为各类器返回的结果的平均值。
在该处,Bagging算法可以认为每个分类器的权重都一样。
2. Boosting
在Bagging方法中,我们假设每个训练样本的权重都是一致的; 而Boosting算法则更加关注错分的样本,越是容易错分的样本,约要花更多精力去关注。对应到数据中,就是该数据对模型的权重越大,后续的模型就越要拼命将这些经常分错的样本分正确。 最后训练出来的模型也有不同权重,所以boosting更像是会整,级别高,权威的医师的话语权就重些。
以下为Data Mining Concepts and Techniques 2nd 中adaboost伪代码:

训练:先初始化每个训练样本的权重相等为1/d,d为样本数量; 之后每次使用一部分训练样本去训练弱分类器,且只保留错误率小于0.5的弱分类器,对于分对的训练样本,将其权重 调整为 error(Mi)/(1-error(Mi)) ,其中error(Mi)为第i个弱分类器的错误率(降低正确分类的样本的权重,相当于增加分错样本的权重);
测试:每个弱分类器均给出自己的预测结果,且弱分类器的权重为log(1-error(Mi))/error(Mi) ) 权重最高的类别,即为最终预测结果。
在adaboost中,弱分类器的个数的设计可以有多种方式,例如最简单的就是使用一维特征的树作为弱分类器。
adaboost在一定弱分类器数量控制下,速度较快,且效果还不错。
我们在实际应用中使用adaboost对输入关键词和推荐候选关键词进行相关性判断。随着新的模型方法的出现, adaboost效果已经稍显逊色,我们在同一数据集下,实验了GBDT和adaboost,在保证召回基本不变的情况下,简单调参后的Random Forest准确率居然比adaboost高5个点以上,效果令人吃惊。。。。
Bagging和Boosting都可以视为比较传统的集成学习思路。 现在常用的Random Forest,GBDT,GBRank其实都是更加精细化,效果更好的方法。 后续会有更加详细的内容专门介绍。
具体adaboost在百度关键词搜索推荐中的应用参见:《分类模型在关键词推荐系统中的应用》
3. 参考内容
[1] Dustinsea
[2] Data Mining Concepts and Techniques 2nd
[3] Soft Margin for Adaboost
[4] 一个版本的adaboost实现
[Mechine Learning & Algorithm] 集成学习方法——Bagging和 Boosting的更多相关文章
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- 集成学习---bagging and boosting
作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力.下面首先介绍这两种方法. 所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升 ...
- 机器学习基础—集成学习Bagging 和 Boosting
集成学习 就是不断的通过数据子集形成新的规则,然后将这些规则合并.bagging和boosting都属于集成学习.集成学习的核心思想是通过训练形成多个分类器,然后将这些分类器进行组合. 所以归结为(1 ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
- 集成学习算法汇总----Boosting和Bagging(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)
零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...
- 集成学习算法总结----Boosting和Bagging(转)
1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于B ...
- 集成学习的不二法门bagging、boosting和三大法宝<结合策略>平均法,投票法和学习法(stacking)
单个学习器要么容易欠拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过一定的结合策略,最终形成一个强学习器.这种集成多个个体学习器的方法称为集成学习(ensemble le ...
- 常用的模型集成方法介绍:bagging、boosting 、stacking
本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(baggi ...
随机推荐
- WinRAR的命令行模式用法介绍
因工作中要对数据打包,顺便研究了下WinRAR的命令行模式,自己写了些例子,基本用法如下: 测试压缩文件准备:文件夹test_data,内部包含子文件夹,分别存放了一些*.log和*.txt文件. 测 ...
- JSP连接数据库,报Unable to compile class for JSP
先看一下报错原因: HTTP Status 500 - Unable to compile class for JSP: type Exception report message Unable to ...
- c++中static关键字的用法总结
类中的静态成员真是个让人爱恨交加的特性.我决定好好总结一下静态类成员的知识点,以便自己在以后面试中,在此类问题上不在被动. 静态类成员包括静态数据成员和静态函数成员两部分. 一 静态数据成员: 类体中 ...
- UVALive - 3942 Remember the Word[Trie DP]
UVALive - 3942 Remember the Word Neal is very curious about combinatorial problems, and now here com ...
- android:exported 属性详解
属性详解 标签: android 2015-06-11 17:47 27940人阅读 评论(7) 收藏 举报 分类: Android(95) 项目点滴(25) 昨天在用360扫描应用漏洞时,扫描结果, ...
- [转载]五种常见的电子商务模式对比:B2B、B2C、C2B、C2C、O2O
转载自http://blog.sina.com.cn/s/blog_64e090b001016843.html 转载自http://blog.sina.com.cn/s/blog_64e090b001 ...
- document.forms用法
1.FF中不能接受document.forms("formname")的使用,ie中可以 最好改成document.forms["formname"]的下标用法 ...
- 1130mysql explain中的type列含义和extra列的含义
很多朋友在用mysql进行调优的时候都肯定会用到explain来看select语句的执行情况,这里简单介绍结果中两个列的含义. 1 type列 官方的说法,说这列表示的是"访问类型" ...
- 简单实用的Log4net帮助类
一直使用Log4net,进行日志记录.今天把实用的帮助类,在博客园进行一下公布 首先,添加一个log4net配置文件 <?xml version="1.0"?> < ...
- 【Beta】第四次任务发布
PM 日常管理&dev版宣传(周日开始). 后端 #99 服务发布 验收条件:使dev版能在www.buaaphylab.com下运行. 前端 #87 登录后能够查看与下载用户收藏的报告.生成 ...