Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南
在Tez上优化Hive查询的指南
在Tez上优化Hive查询无法采用一刀切的方法。查询性能取决于数据的大小、文件类型、查询设计和查询模式。在性能测试过程中,应评估和验证配置参数及任何SQL修改。建议在工作负载的性能测试过程中一次只进行一项更改,并最好在开发环境中评估调优更改的影响,然后再在生产环境中使用。
这里分享一些关于Tez上Hive查询的基本故障排除和调优指南。
调优指南
不同的hive版本,不同执行引擎之间的调优行为有所差异,所以同一条sql可能会有不一样的速度。
一般情况下,我们可以通过以下步骤有助于识别可能导致性能下降的地方。
- 验证和确认YARN容量调度器配置
队列配置错误可能会由于对用户可用资源的任意限制而影响查询性能。验证用户限制因子、最小用户限制百分比和最大容量。
- 检查Hive和HiveServer2配置中的任何安全阀(非默认值)是否相关
移除任何遗留的和过时的属性。
- 识别缓慢的区域,例如mapper任务、reducer任务和连接操作
- 审查Tez引擎和平台的通用调优属性。
- 审查mapper任务并根据需要增加/减少任务数。
- 审查reducer任务并根据需要增加/减少任务数。
- 审查任何并发相关的问题——并发问题分为两种,如下所述:
- 队列内用户间的并发。这可以通过调整YARN队列的用户限制因子进行调优(详细信息参考容量调度器博客)。
- Hive on Tez会话的预热容器之间的并发,详见下文。
理解Tez中的并行化
在更改任何配置之前,必须了解Tez内部的工作机制。例如,这包括了解Tez如何确定正确的mapper和reducer数量。审查Tez架构设计以及有关初始任务并行性和自动reducer并行性的详细信息将有助于优化查询性能。
理解mapper数量
Tez使用作业的初始输入数据确定mapper任务的数量。在Tez中,任务数量由分组拆分决定,这相当于MapReduce作业中输入拆分确定的mapper数量。
tez.grouping.min-size和tez.grouping.max-size决定mapper的数量。min-size的默认值为16 MB,max-size为1 GB。- Tez确定任务数量,使每个任务的数据量符合最大/最小分组大小。
- 减少
tez.grouping.max-size会增加任务/mapper数量。 - 增加
tez.grouping.max-size会减少任务数量。
例如:
- 输入数据(输入碎片/拆分) – 1000个文件(约1.5 MB大小)
- 总数据量约为 – 1000*1.5 MB = ~1.5 GB
- Tez可能尝试使用至少两个任务处理这些数据,因为每个任务的最大数据量可能为1 GB。最终,Tez可能强制将1000个文件(拆分)组合到两个任务中,导致执行时间变慢。
- 如果将
tez.grouping.max-size从1 GB减少到100 MB,mapper数量可能增加到15,从而提供更好的并行性。性能因此提高,因为改进的并行性将工作分散到15个并发任务中。
以上是一个示例场景,然而在生产环境中使用ORC或Parquet等二进制文件格式时,根据存储类型、拆分策略文件或HDFS块边界确定mapper数量可能会变得复杂。
注意:更高程度的并行性(如mapper/reducer数量多)并不总是意味着更好的性能,因为它可能导致每个任务的资源减少以及由于任务开销而导致的资源浪费。
理解reducer数量
Tez使用多种机制和设置确定完成查询所需的reducer数量。
- Tez根据要处理的数据(字节数)自动确定reducer。
- 如果
hive.tez.auto.reducer.parallelism设置为true,Hive会估算数据大小并设置并行性估算值。Tez将在运行时采样源顶点的输出大小并根据需要调整估算值。 - 默认情况下,最大reducer数量设置为1009(
hive.exec.reducers.max)。 - Hive/Tez使用以下公式估算reducer数量,然后调度Tez DAG:
Max(1, Min(hive.exec.reducers.max [1009], ReducerStage estimate/hive.exec.reducers.bytes.per.reducer)) x hive.tez.max.partition.factor [2]
以下三个参数可以调整以增加或减少mapper数量:
hive.exec.reducers.bytes.per.reducer:每个reducer的大小。更改为较小值以增加并行性,或更改为较大值以减少并行性。默认值为256 MB(即如果输入大小为1 GB,则使用4个reducer)。tez.min.partition.factor:默认值为0.25。tez.max.partition.factor:默认值为2.0。增加以增加reducer数量,减少以减少reducer数量。
用户可以使用 mapred.reduce.tasks 手动设置reducer数量。这不推荐使用,应避免使用。
建议:
- 避免手动设置reducer数量。
- 增加reducer数量并不总是能保证更好的性能。
- 根据reducer阶段估算,如果要增加或减少reducer数量,可以调整
hive.exec.reducers.bytes.per.reducer参数到较小或较大值。
并发
我们需要理解和调整Tez上的Hive并发会话,如运行多个Tez AM容器。以下属性有助于理解默认队列和会话数量行为。
hive.server2.tez.default.queues:与YARN队列对应的以逗号分隔的值列表,用于维护Tez会话池。hive.server2.tez.sessions.per.default.queue:每个YARN队列中保持在池中的Tez会话(DAGAppMaster)数量。hive.server2.tez.initialize.default.sessions:如果启用,HiveServer2(HS2)在启动时将启动所有必要的Tez会话以满足sessions.per.default.queue要求。
当定义以下属性时,HiveServer2将为每个默认队列创建一个Tez Application Master(AM),乘以HiveServer2服务启动时的会话数量。因此:
(Tez Sessions)total = HiveServer2instances x (default.queues) x (sessions.per.default.queue)
示例说明:
hive.server2.tez.default.queues= “queue1, queue2”hive.server2.tez.sessions.per.default.queue=2
=>HiveServer2将创建4个Tez AM(queue1两个,queue2两个)。
注意:池中的Tez会话总是运行,即使在空闲集群上。
如果HiveServer2连续使用,这些Tez AM将继续运行,但如果HS2空闲,这些Tez AM将根据 tez.session.am.dag.submit.timeout.secs 定义的超时被终止。
案例1:未指定队列名称
如果查询未指定队列名称(tez.queue.name),则只会使用池中的Tez AM(如上所述初始化)。在这种情况下,HiveServer2将选择一个空闲/可用的Tez AM(队列名称可能是随机选择的)。如果未指定队列名称,则查询将保持在HiveServer2中的挂起状态,直到池中有一个可用的默认Tez AM来处理查询。在JDBC/ODBC客户端或HiveServer2日志文件中不会有任何消息。由于没有消息生成,当查询挂起时,用户可能会认为JDBC/ODBC连接或HiveServer2已断开,但实际上它在等待一个Tez AM执行查询。
案例2:指定队列名称
如果查询指定了队列名称,无论有多少初始化的Tez AM正在使用或空闲,HiveServer2都会为此连接创建一个新的Tez AM,并且查询可以执行(如果队列有可用资源)。
并发的指南/建议
- 对于不希望用户限制在同一个Tez AM池中的用例或查询,将
hive.server2.tez.initialize.default.sessions设置为false。禁用此选项可以减少HiveServer2上的争用并提高查询性能。 - 此外,增加
hive.server2.tez.sessions.per.default.queue的会话数量。 - 如果有需要为每组用户提供单独或专用Tez AM池的用例,需要为每组用户提供专用的HiveServer2服务,每个服务具有相应的默认队列名称和会话数量,并要求每组用户使用各自的HiveServer2。
容器复用和预热容器
容器复用
这是一个优化,可以减少容器的启动时间影响。通过设置 tez.am.container.reuse.enabled 为true来启用此功能。这节省了与YARN交互的时间。还可以保持容器组活跃,快速旋转容器,并跳过YARN队列。
预热容器
容器数量与将附加到每个Tez AM的YARN执行容器数量相关。即使Tez AM空闲(未执行查询),每个AM也会保留相同数量的容器。在某些情况下,这可能会导致太多容器空闲且未释放,因为这里定义的容器将被Tez AM保留,即使它是空闲的。这些空闲容器将继续占用YARN中的资源,其他应用程序可能会利用这些资源。
以下属性用于配置预热容器:
hive.prewarm.enabledhive.prewarm.numcontainers
一般Tez调优参数
在处理Tez上Hive查询的性能下降时,审查以下属性作为一级检查。您可能需要根据查询和数据属性设置或调整其中一些属性。最好在开发和QA环境中评估配置属性,然后根据结果将其推送到生产环境。
hive.cbo.enable
将此属性设置为true启用基于成本的优化(CBO)。CBO是Hive查询处理引擎的一部分,由Apache Calcite提供支持。CBO通过检查查询中指定的表和条件生成有效的查询计划,最终减少查询执行时间并提高资源利用率。hive.auto.convert.join
将此属性设置为true允许Hive根据输入文件大小启用将常见连接转换为mapjoin的优化。hive.auto.convert.join.noconditionaltask.size
您将希望在查询中尽可能多地执行mapjoin。此大小配置使用户可以控制表的大小以适应内存。该值表示可以转换为适合内存的哈希表的表的大小总和。建议将其设置为hive.tez.container.size的1/3。tez.runtime.io.sort.mb
输出排序时的排序缓冲区大小。建议将其设置为hive.tez.container.size的40%,最大值为2 GB。通常不需要超过此最大值。tez.runtime.unordered.output.buffer.size-mb
当输出不需要排序时的内存。这是缓冲区的大小,如果不直接写入磁盘。建议将其设置为hive.tez.container.size的10%。hive.exec.parallel
此属性启用Hive查询阶段的并行执行。默认情况下,此属性设置为false。将此属性设置为true有助于并行化独立的查询阶段,从而整体提高性能。hive.vectorized.execution.enabled
矢量化查询执行是Hive的一个功能,它大大减少了典型查询操作(如扫描、过滤、聚合和连接)的CPU使用量。默认情况下,此属性设置为false。将其设置为true。hive.merge.tezfiles
默认情况下,此属性设置为false。将此属性设置为true会合并Tez文件。使用此属性可能会根据数据大小或要合并的文件数量增加或减少查询的执行时间。在使用此属性之前,请在较低环境中评估查询性能。hive.merge.size.per.task
此属性描述作业结束时合并文件的大小。hive.merge.smallfiles.avgsize
当作业的平均输出文件大小小于此数字时,Hive将启动一个额外的map-reduce作业将输出文件合并为更大的文件。默认情况下,此属性设置为16 MB。
文章来源:Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南
Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南的更多相关文章
- Hibernate的几种查询方式-HQL,QBC,QBE,离线查询,复合查询,分页查询
HQL查询方式 这一种我最常用,也是最喜欢用的,因为它写起来灵活直观,而且与所熟悉的SQL的语法差不太多.条件查询.分页查询.连接查询.嵌套查询,写起来与SQL语法基本一致,唯一不同的就是把表名换成了 ...
- 【大数据面试】【框架】Hive:架构、计算引擎、比较、内外部表、by、函数、优化、数据倾斜、动静态分区
一.组成 1.架构 源数据原本是存在dubby数据库,存在MySQL可以支持多个客户端 客户端.数据存储(HDFS).MR计算引擎 2.计算引擎的选择 MR引擎:基于磁盘,计算时间长,但一定能算出结果 ...
- hive的查询注意事项以及优化总结 .
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具.使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别, 所以需要去掉原有关系型数 ...
- hive引擎的选择:tez和spark
背景 mr引擎在hive 2中将被弃用.官方推荐使用tez或spark等引擎. 选择 tez 使用有向无环图.内存式计算. spark 可以同时作为批式和流式的处理引擎,减少学习成本. 问题& ...
- Hive 利用 on tez 引擎 合并小文件
Hive 利用 on tez 引擎 合并小文件 标签(空格分隔): Hive \[f(N) + \sum_{i=2}^N f(N-i+1)*X_i\] SET hive.exec.dynamic.pa ...
- 【Hive】概念、安装、数据类型、DDL、DML操作、查询操作、函数、压缩存储、分区分桶、实战Top-N、调优(fetch抓取)、执行计划
一.概念 1.介绍 基于Hadoop的数据仓库工具,将结构化数据映射为一张表,可以通过类SQL方式查询 本质:将HQL转换成MapReduce程序 Hive中具有HQL对应的MapReduce模板 存 ...
- 数据库系列:MySQL慢查询分析和性能优化
1 背景 我们的业务服务随着功能规模扩大,用户量扩增,流量的不断的增长,经常会遇到一个问题,就是数据存储服务响应变慢. 导致数据库服务变慢的诱因很多,而RD最重要的工作之一就是找到问题并解决问题. 下 ...
- Galera集群server.cnf参数调整--Innodb存储引擎内存相关参数(一)
在innodb引擎中,内存的组成主要有三部分:缓冲池(buffer pool),重做日志缓存(redo log buffer),额外的内存池(additional memory pool).
- (转) mysql数据库引擎:MyISAM和InnoDB(性能优化)
转自 http://yuwensan126.iteye.com/blog/1138022 Mysql 数据库中,最常用的两种引擎是innordb和myisam.Innordb的功能要比myiasm强大 ...
- mysql优化 | 存储引擎,建表,索引,sql的优化建议
个人对于选择存储引擎,建表,建索引,sql优化的一些总结,给读者提供一些参考意见 推荐访问我的个人网站,排版更好看: https://chenmingyu.top/mysql-optimize/ 存储 ...
随机推荐
- WPF 已知问题 Popup 失焦后导致 ListBox 无法用 MouseWheel 滚动问题和解决方法
本文记录在 Popup 失焦后导致 ListBox 无法用 MouseWheel 滚动问题 原因: Popup虽然是个完整独立的窗体,但它的激活要靠它的"父窗口"间接来激活,这里之 ...
- dotnet 使用 IndentedTextWriter 辅助生成代码时生成带缩进的内容
随着源代码生成的越来越多的应用,自然也遇到了越来越多开发上的坑,例如源代码的缩进是一个绕不过去的问题.如果源代码生成是人类可见的代码,我期望生成的代码最好是比较符合人类编写代码的规范.为了能让人类在阅 ...
- 快速了解Django:核心概念解析与实践指南
title: 快速了解Django:核心概念解析与实践指南 date: 2024/5/1 20:31:41 updated: 2024/5/1 20:31:41 categories: 后端开发 ta ...
- 错误记录——mysql5.7连接失败,服务无法启动
起因: 上周安装完mysql后,成功新建了数据库,一切都是正常的,于是就先搁置一旁.今天周一过来,却突然发现无法连接mysql了. 过程: 第一反应是服务没有启动,毕竟重启了电脑,说不定是服务没有自动 ...
- VMware最小化安装Centos7.6-无桌面
目录 安装包工具 新建虚拟机 安装 centos 7.6 系统 终端登陆系统 设置ip地址 关闭防火墙 关闭 SELINUX SELINUX=enforcing 硬盘挂载 桥接上网方式 安装包工具 V ...
- AI回答总不满意?你的提问方式可能完全错误!
AI回答总不满意?你的提问方式可能完全错误! 大家好,我是卷福同学,一个专注AI大模型整活的前阿里程序员,腾讯云社区2023新秀突破作者 向AI提问想写一篇论文,结果AI就生成2000字左右的文章后就 ...
- 定了!AIRIOT新品发布会,6月6日北京见。
随着物联网.大数据.AI技术的成熟和演进,智能物联网技术正在加速.深入渗透至各行业应用. AIRIOT物联网平台作为赋能数字经济发展和产业转型的数字基座,由航天科技控股集团股份有限公司(股票代码:00 ...
- AIRIOT答疑第7期|如何快速提升物联网项目交付速度?
平台+模板,套上就能用!贼拉快! AIRIOT提供物联网低代码平台+多套行业案例模板,针对于有明确项目的服务商,用平台已经配置好的节点数.功能模块.流程,直接上手干项目! AIRIOT解答: 多套物联 ...
- Anagrams(字谜)
描述 Most crossword puzzle(猜字谜) fans are used to anagrams(字谜)--groups of words with the same letters i ...
- Vue cli使用Element UI
当前的测试环境如下: ---- 新版的@vue/cli ---- Vue2.x版本 第一步:安装Element UI npm i element-ui -S 第二步:引入Element UI 在mai ...