题目


分析

可能玩两次也就是形成环即是Tarjan缩点后在同一个强连通分量

如果按照游戏连边数量将达到\(O(n^2)\),当中其实有很多边可以共用,

考虑\(i\)连向\(i\)的倍数,以及有趣程度连接兴奋程度,其实连接倍数可以优化一下,

比如说\(i\)连向\(j\),\(j\)连向\(k\),那么\(i\)连向\(k\)的边完全可以被省掉,

那么对于每个数连接其与一个质数的乘积,根据埃氏筛建的边应该为\(O(nloglogn)\)

实际上仍然达不到上界,总边数在\(4n\)以内


代码

#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int M=100000,N=M|15; struct node{int y,next;}e[N<<2];
int dfn[N],stac[N],low[N],et,eT,v[N],St[N],Ed[N],ans;
int Cnt,col[N],Top,as[N],prime[N],bs[N],n,tot,cnt;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed min(int a,int b){return a<b?a:b;}
inline void add(int x,int y){e[++et]=(node){y,as[x]},as[x]=et;}
inline void tarjan(int x){
dfn[x]=low[x]=++tot,stac[++Top]=x,v[x]=1;
for (rr int i=as[x];i;i=e[i].next)
if (!dfn[e[i].y]){
tarjan(e[i].y);
low[x]=min(low[x],low[e[i].y]);
}else if (v[e[i].y])
low[x]=min(low[x],dfn[e[i].y]);
if (dfn[x]==low[x]){
rr int y; ++cnt;
do{
y=stac[Top--];
col[y]=cnt,v[y]=0;
}while (y!=x);
}
}
signed main(){
for (rr int i=2;i<=M;++i){
if (!v[i]) prime[++Cnt]=i;
for (rr int j=1;j<=Cnt&&prime[j]<=M/i;++j){
v[i*prime[j]]=1;
if (i%prime[j]==0) break;
}
}
for (rr int i=1;i<=M;++i)
for (rr int j=1;j<=Cnt&&prime[j]<=M/i;++j)
add(i,i*prime[j]);
memcpy(bs,as,sizeof(as)),eT=et;
for (rr int T=iut();T;--T){
memcpy(as,bs,sizeof(bs)),et=eT;
memset(dfn,0,sizeof(dfn));
memset(v,0,sizeof(v));
memset(col,0,sizeof(col));
memset(low,0,sizeof(low));
n=iut(),ans=tot=0;
for (rr int i=1;i<=n;++i) St[i]=iut();
for (rr int i=1;i<=n;++i) Ed[i]=iut();
for (rr int i=1;i<=n;++i) add(St[i],Ed[i]);
tarjan(1);
for (rr int i=1;i<=n;++i)
if (col[St[i]]==col[Ed[i]]) ++ans;
print(ans),putchar(10);
}
return 0;
}

#Tarjan#洛谷 5676 [GZOI2017]小z玩游戏的更多相关文章

  1. P5676 [GZOI2017]小z玩游戏【Tarjan】

    小z玩游戏 Tarjan算是板子题吧,但是要稍微做一些修改,建边需要多考虑,建立"虚点". 题目描述 小 z 很无聊. 小 z 要玩游戏. 小 z 有\(N\)个新游戏,第\(i\ ...

  2. 二分图【洛谷P2175】 小Z的游戏分队

    P2175 小Z的游戏分队 小Z受不了寂寞,准备举办一次DOTA比赛,为了能让ACM班全部都参加比赛,他还特制了一张DOTA地图能够支持任意多人打任意多人. 现在问题来了,怎么把这么多人分成两队?小Z ...

  3. P5676 [GZOI2017]小z玩游戏 Tarjan+优化建图

    题目描述 分析 一开始看到这道题,首先想到的就是建好边后跑一个Tarjan缩点,将siz大于1的节点统计一下,输出结果 Tarjan非常显然易得,关键就是怎么建边 比较好想的一种思路就是枚举每一个兴奋 ...

  4. 【题解】 [GZOI2017]小z玩游戏

    题目戳我 \(\text{Solution:}\) 考虑建图.操作可以看作对\(1\)进行的操作,于是有以下运行过程: \(1\to w[i]\to e[i]\to...\) 考虑倍数,一个数可以走到 ...

  5. 【洛谷5月月赛】玩游戏(NTT,生成函数)

    [洛谷5月月赛]玩游戏(NTT,生成函数) 题面 Luogu 题解 看一下要求的是什么东西 \((a_x+b_y)^i\)的期望.期望显然是所有答案和的平均数. 所以求出所有的答案就在乘一个逆元就好了 ...

  6. 神奇的建图方式(Tarjan)——小z玩游戏

    原题来自与:洛谷 P5676(GZOI2017)  链接: https://www.luogu.com.cn/problem/P5676 题面: 题意比较明显,如果已经建好了边,那么跑个Tarjan ...

  7. 洛谷 P4279 [SHOI2008]小约翰的游戏 解题报告

    P4279 [SHOI2008]小约翰的游戏 题目描述 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有\(n\)堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子 ...

  8. 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】

    题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...

  9. [bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵

    Description 小凸和小方是好朋友,小方给小凸一个 \(N \times M\)( \(N \leq M\) )的矩阵 \(A\) ,要求小秃从其中选出 \(N\) 个数,其中任意两个数字不能 ...

  10. [洛谷P4111][HEOI2015]小Z的房间

    题目大意:有一个$n\times m$的房间,一些位置是房间,另一些位置是柱子,相邻两个房间之间有墙,问有多少种方案可以打通一些墙把所有房间连成一棵树,柱子不可以打通 题解:矩阵树定理,把房间当点,墙 ...

随机推荐

  1. 麒麟系统开发笔记(四):从Qt源码编译安装之编译安装QtCreator4.8.1,并配置编译测试Demo

    前言   本篇紧接上一篇,上一篇已经从Qt源码编译了Qt,那么Qt开发的IDE为QtCreator,本篇从源码编译安装QtCreator,并配置好构建套件,运行Demo并测试.   QtCreator ...

  2. 单表查询,多表查询,子查询---day37

    1.单表查询 # ### part1 单表查询 # sql 查询语句的完整语法 '''select..from..where..group by..having..order by..limit..' ...

  3. .net+bootstrap写的一个还不错的音乐网站

    以前做的一款设计音乐网站,分享下. 技术用的是.net +sqlserver 大致的样子是这样的. 1.首页如下: 2.播放歌词页面如下:歌词自动滚动,且可悬停. 3.歌单信息页面如下: 详细页面如下 ...

  4. 解析Spring中的循环依赖问题:初探三级缓存

    什么是循环依赖? 这个情况很简单,即A对象依赖B对象,同时B对象也依赖A对象,让我们来简单看一下. // A依赖了B class A{ public B b; } // B依赖了A class B{ ...

  5. Error creating bean with name 'XXX': Bean with name 'senseOneToSomeFeignImpl' has been injected into other beans [XXXXXX] in its raw version as part of a circular reference

    关于Spring框架中的循环依赖问题,您可以尝试以下几种方法来解决: 重新定义Bean依赖:重构代码以消除循环依赖.这可能涉及重新设计类,使它们不相互依赖即可运行. 使用Setter注入:与构造函数注 ...

  6. 【Azure 应用服务】记一次Azure Spring Cloud 的部署错误 (az spring-cloud app deploy -g dev -s testdemo -n demo -p ./hellospring-0.0.1-SNAPSHOT.jar --->>> Failed to wait for deployment instances to be ready)

    问题描述 使用Azure Spring Cloud服务,在部署时候失败,收到错误消息为: c:\project\hellospring>az spring-cloud app deploy -g ...

  7. Taurus.MVC WebMVC 入门开发教程6:路由配置与路由映射

    前言: 在本篇 Taurus.MVC WebMVC 入门开发教程的第六篇文章中, 我们将讨论如何配置路由并映射到控制器和操作方法. 路由是决定应用程序如何响应客户端请求的重要组成部分,因此在 Web ...

  8. Netty笔记(5) - 编码解码机制 和 Protobuf技术

    介绍: 编写网络应用程序时,因为数据在网络中传输的都是二进制字节码数据,在发送数据时就需要编码,接收数据时就需要解码 codec(编解码器) 的组成部分有两个:decoder(解码器)和 encode ...

  9. String对象和String常量池

    1. String的基本特性 String:字符串,使用一对 "" 引起来表示 String s1 = "mogublog" ; // 字面量的定义方式 Str ...

  10. Java 手动抛异常

    1 package com.bytezero.throwable; 2 3 import java.io.File; 4 import java.io.FileInputStream; 5 impor ...