题目


分析

就是把维护颜色段和树结合起来,

注意拼接的时候要减去中间相同的部分


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011; struct node{int y,next;}e[N<<1];
int dep[N],as[N],fat[N],top[N],dfn[N],tot,son[N],n,Lc,Rc,lL,rR,m;
int col[N],nfd[N],big[N],w[N<<2],lazy[N<<2],lc[N<<2],rc[N<<2],k=1;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void add(int x,int y){
e[++k]=(node){y,as[x]},as[x]=k,
e[++k]=(node){x,as[y]},as[y]=k;
}
inline void pup(int k){
lc[k]=lc[k<<1],rc[k]=rc[k<<1|1];
w[k]=w[k<<1]+w[k<<1|1]-(rc[k<<1]==lc[k<<1|1]);
}
inline void pdown(int k){
lc[k<<1]=lc[k<<1|1]=lc[k],lazy[k<<1]=lazy[k<<1|1]=1,
rc[k<<1]=rc[k<<1|1]=rc[k],w[k<<1]=w[k<<1|1]=1,lazy[k]=0;
}
inline void build(int k,int l,int r){
if (l==r){
lc[k]=rc[k]=col[nfd[l]],w[k]=1;
return;
}
rr int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
pup(k);
}
inline void update(int k,int l,int r,int x,int y,int z){
if (l==x&&r==y){
lc[k]=rc[k]=z,w[k]=lazy[k]=1;
return;
}
if (lazy[k]) pdown(k);
rr int mid=(l+r)>>1;
if (y<=mid) update(k<<1,l,mid,x,y,z);
else if (x>mid) update(k<<1|1,mid+1,r,x,y,z);
else update(k<<1,l,mid,x,mid,z),
update(k<<1|1,mid+1,r,mid+1,y,z);
pup(k);
}
inline signed query(int k,int l,int r,int x,int y){
if (l==x&&r==y){
if (l==lL) Lc=lc[k];
if (r==rR) Rc=rc[k];
return w[k];
}
if (lazy[k]) pdown(k);
rr int mid=(l+r)>>1;
if (y<=mid) return query(k<<1,l,mid,x,y);
else if (x>mid) return query(k<<1|1,mid+1,r,x,y);
else {
rr int ansL=query(k<<1,l,mid,x,mid),
ansR=query(k<<1|1,mid+1,r,mid+1,y);
return ansL+ansR-(rc[k<<1]==lc[k<<1|1]);
}
}
inline void dfs1(int x,int fa){
dep[x]=dep[fa]+1,fat[x]=fa,son[x]=1;
for (rr int i=as[x],mson=-1;i;i=e[i].next)
if (e[i].y!=fa){
dfs1(e[i].y,x);
son[x]+=son[e[i].y];
if (son[e[i].y]>mson) big[x]=e[i].y,mson=son[e[i].y];
}
}
inline void dfs2(int x,int linp){
dfn[x]=++tot,nfd[tot]=x,top[x]=linp;
if (!big[x]) return; dfs2(big[x],linp);
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fat[x]&&e[i].y!=big[x]) dfs2(e[i].y,e[i].y);
}
inline void Update(int x,int y,int z){
for (;top[x]!=top[y];x=fat[top[x]]){
if (dep[top[x]]<dep[top[y]]) x^=y,y^=x,x^=y;
update(1,1,n,dfn[top[x]],dfn[x],z);
}
if (dep[x]>dep[y]) x^=y,y^=x,x^=y;
update(1,1,n,dfn[x],dfn[y],z);
}
inline signed Query(int x,int y){
int ans=0,xLc=-1,yLc=-1;
for (;top[x]!=top[y];x=fat[top[x]]){
if (dep[top[x]]<dep[top[y]]){
x^=y,y^=x,x^=y;
if (xLc^yLc) xLc^=yLc,yLc^=xLc,xLc^=yLc;
}
lL=dfn[top[x]],rR=dfn[x];
ans+=query(1,1,n,dfn[top[x]],dfn[x]);
ans-=(Rc==xLc),xLc=Lc;
}
if (dep[x]<dep[y]){
x^=y,y^=x,x^=y;
if (xLc^yLc) xLc^=yLc,yLc^=xLc,xLc^=yLc;
}
lL=dfn[y],rR=dfn[x];
ans+=query(1,1,n,dfn[y],dfn[x]);
ans-=(Rc==xLc)+(Lc==yLc);//除了x的拼接还有y的拼接
return ans;
}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=n;++i) col[i]=iut();
for (rr int i=1;i<n;++i) add(iut(),iut());
dfs1(1,0),dfs2(1,1),build(1,1,n);
for (;m;--m){
rr char c=getchar();
while (c!='C'&&c!='Q') c=getchar();
rr int x=iut(),y=iut();
if (c=='C') Update(x,y,iut());
else print(Query(x,y)),putchar(10);
}
return 0;
}

#树链剖分,线段树#洛谷 2486 [SDOI2011]染色的更多相关文章

  1. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  2. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  3. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  4. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  5. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  6. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  7. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  8. HDU4897 (树链剖分+线段树)

    Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...

  9. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  10. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

随机推荐

  1. vscode中跑go test时打印详细信息配置

    1.文件>首选项>设置>搜索Test Flags 2.选择在settings.json中编辑 3.添加以下内容 "go.testFlags":[ "-v ...

  2. 【Azure 应用服务】Azure App Service(Windows)环境中如何让.NET应用调用SAP NetWeaver RFC函数

    问题描述 在Azure App Service for Windows的环境中,部署.NET应用,其中使用了 SAP NetWeaver RFC函数 (需要加载 sapnwrfc.dll).详细的错误 ...

  3. 【Azure 云服务】查看Azure云服务在中国区域的VM型号大小列表(型号编码,定价层,以及CPU, Memory等)

    问题描述 如何查看创建 Azure Cloud Service 服务时,可以选择的VM型号吗? 问题解答 根据官网参考,可以通过PowerShell脚本 Get-AzComputeResourceSk ...

  4. ASP.NET Core 选项

    目录 1,选项接口 2,注入配置与IOptions 3,IOptionsSnapshot 首先要了解 ASP.NET Core 中的配置,请点击这里了解:https://www.cnblogs.com ...

  5. spark conf、config配置项总结

    1.structured-streaming的state 配置项总结 Config Name Description Default Value spark.sql.streaming.stateSt ...

  6. C++ STL 容器-string类型

    C++ STL 第一部分-容器 STL的介绍 C++的STL分为六大部分 容器分为 容器的概念 容器内元素的条件 1.必须可以复制copy或者搬移move,包括条件是在拷贝和搬移的过程中不存在副作用. ...

  7. 003-Java程序流程控制

    3. Java程序流程控制(重点) 程序的三种控制结构 3.1 分支结构 if, switch 3.1.1 if if 分支 根据条件(真或假)来决定执行某段代码. if分支应用场景 if 第一种形式 ...

  8. Java 类的内部成员之五:内部类

    1 package com.bytezreo.innerclass; 2 3 /** 4 * 5 * @Description 类的内部成员之五:内部类 6 * @author Bytezero·zh ...

  9. WebView无法加载页面报错 net:ERR_CLEARTEXT_NOT_PERMITTED 还有webView加载网页后出现ERR_UNKNOWN_URL_SCHEME

    根据网络安全配置- 从Android 9(API级别28)开始,默认情况下禁用明文支持.因此http的url均无法在webview中加载 还可以看看-https: //koz.io/android-m ...

  10. 【5分钟】W10 64bit系统本地安装postgresql 11

    1.下载 官网下载地址 2.安装 一路默认,有一个选语言的可以选中chinese simple(中文简体). 3.初始化 1)进入bin:   cd C:\Program Files\PostgreS ...