Keys:

  1. What are Eigenvalues and Eigenvectors?
  2. How to find Eigenvalues and Eigenvectors?
  3. Applications of Egenvalues and Eigenvectors:
    • Difference equation \(u_{k+1}=Au_k\)
    • Solution of \(\frac{du}{dt}=Au\)
    • Markov Matrices
    • Projections and Fourier Series
  4. Special Matrix
    • Symmetric Matrices
    • Positive Definite Matrix
    • Similar Matrices
    • Jordan Theorem

6.1 Introduction to Eigenvalues and Eigenvectors

keys:

  1. If X lies along the same direction as AX : \(AX = \lambda X\),then \(\lambda\) is eigenvalue and X is eigenvector.
  2. If \(AX=\lambda X\) then \(A^2X=\lambda^2 X\) and \(A^{-1}X=\lambda^{-1} X\) and \((A+cI)X=(\lambda + c) X\) : the same eigenvector X.
  3. If \(AX=\lambda X\) then \((A-\lambda I)X=0\) and \(A-\lambda I\) is singular and \(det(A-\lambda I)=0\) can find eigenvalues and eigenvectors.
  4. Check : \(\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn}\)
  5. Projection Matrix : \(\lambda = 1 \ and \ 0\);Reflections Matrix : \(\lambda = 1 \ and \ -1\);Rotations Matrix : \(\lambda = e^{i \theta} \ and \ e^{-i \theta}\)。

The Equation for the Eigenvalues and Eigenvectors

  1. Compute the determinant of \(A-\lambda I\).
  2. Find the roots of the polynomial of the determinant of \(A-\lambda I\),by solving det(\(A-\lambda I\)) = 0.
  3. For each eigenvalue \(\lambda\),solve \((A-\lambda I)X = 0\) to find an eigenvector X.

example:

\[A = \left[ \begin{matrix} 0&1 \\ 1&0 \end{matrix} \right] \\
\Downarrow \\
solve \ \ characteristic \ \ equation \\
det (A-\lambda I) = \left | \begin{matrix} -\lambda&1 \\ 1&-\lambda \end{matrix} \right| \\
\lambda_1 = 1 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\
\lambda_2 = -1 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\
check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 0,\ \ \lambda_1 \lambda_2 = detA = -1
\\
\]
\[B = \left[ \begin{matrix} 3&1 \\ 1&3 \end{matrix} \right] \\
\Downarrow \\
solve \ \ characteristic \ \ equation \\
det (B-\lambda I) = \left | \begin{matrix} 3-\lambda&1 \\ 1&3-\lambda \end{matrix} \right| \\
\lambda_1 = 4 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\
\lambda_2 = 2 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\
check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 6,\ \ \lambda_1 \lambda_2 = detB = 8
\\
\]

If \(AX=\lambda X\),the \((A+nI)X = \lambda X + nIX = (\lambda + n)X\);If eigenvectors of A is the same as eigenvectors of B, the \((A+B)X=(\lambda_{A} + \lambda_{B})X\).

Diagonalizing a Matrix

Eigenvectors of A for n different \(\lambda's\) are independent.Then we can diagonalize A.

The columns of X are eigenvectors.

So:

\[AX \\
= A \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \\
= \left[ \begin{matrix} \lambda_1x_1&\lambda_2x_2&\cdots&\lambda_2x_n\end{matrix} \right] \\
= \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \left[ \begin{matrix} \lambda_1&& \\
&\ddots&\\
&&\lambda_n
\end{matrix} \right] \\
=X\Lambda \\
\Downarrow \\
AX=X\Lambda \\
X^{-1}AX=\Lambda \ or \ A=X\Lambda X^{-1} \\
\Downarrow \\
A^k =(X\Lambda X^{-1})_1(X\Lambda X^{-1})_2\cdots (X\Lambda X^{-1})_k = X\Lambda^k X^{-1}
\]

example:

\[\left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right] =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right]
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right]
\\
\left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right]^k =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right]^k
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right] =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1^k&0 \\ 0&6^k \end{matrix} \right]
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right]
\]

When all \(|\lambda_i| < 0\),the \(A^k \rightarrow 0\).

6.2 Applications of Eigenvalue and Eigenvector

Difference equation \(u_{k+1} = Au_k\)

Matrix Powers \(A^k\) : \(u_{k}=A^ku_0 = (X \Lambda X^{-1})(X \Lambda X^{-1})\cdots(X \Lambda X^{-1})u_0=X \Lambda^k X^{-1}u_0\)

step1 :

\[u_0 = c_1x_1 + c_2x_2 + \cdots + c_nx_n =
\left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right]
\left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] = Xc \\
\Downarrow \\
c = X^{-1}u_0
\]

step2~3:

\[u_{k}=A^ku_0 = X \Lambda^k X^{-1} u_0 = X \Lambda^k c =
\left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right]
\left[ \begin{matrix}
(\lambda_1)^k&& \\
&(\lambda_2)^k \\
&&\ddots \\
&&&(\lambda_n)^k\end{matrix} \right]
\left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] \\
\Downarrow \\
u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2 + \cdots + c_n(\lambda_n)^kx_n
\]

It solves \(u_{k+1} = Au_k\)

example:

Fibonacci Numbers: 0,1,1,2,3,5,8,13...

\(F_{k+2}=F_{k+1}+F_{k}\)

Let \(u_k = \left[ \begin{matrix} F_{k+1}\\F_k \end{matrix}\right]\)

\[F_{k+2} = F_{k+1} + F_{k} \\
F_{k+1} = F_{k+1} \\
\Downarrow \\
u_{k+1}= \left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right]u_{k} \\
\Downarrow \\
A=\left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right] \\
det(A-\lambda I) = 0 \\
\Downarrow \\
\lambda_1 = \frac{1+\sqrt{5}}{2} =1.618, \ \
x_1=\left[ \begin{matrix} \lambda_1\\1\end{matrix}\right] \\
\lambda_2 = \frac{1-\sqrt{5}}{2} =-0.618, \ \
x_2=\left[ \begin{matrix} \lambda_2\\1\end{matrix}\right] \\
and \\
u_0 = \left[ \begin{matrix} 1\\0 \end{matrix}\right] =
c_1x_1 + c_2x_2
\rightarrow
c_1 = \frac{1}{\lambda_1 - \lambda_2}, c_2 = \frac{1}{\lambda_2 - \lambda_1} \\
\Downarrow \\
u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2\\
u_{100} = \frac{(\lambda_1)^{100}x_1-(\lambda_2)^{100}x_2}{\lambda_1 - \lambda_2}
\]

Solution of du/dt = Au

key : \(e^{At}\)

Taylor Series : \(e^x = 1 + x + \frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n\)

S is eigenvectors matrix of A.

\[e^{At} = I + At + \frac{1}{2}(At)^2+\cdots+\frac{1}{n!}(At)^n \\
A = S\Lambda S^{-1} \\
I = SS^{-1} \\
\Downarrow \\
e^{At} = SS^{-1} + S\Lambda S^{-1}t + \frac{1}{2}(S\Lambda S^{-1}t)^2+\cdots+\frac{1}{n!}(S\Lambda S^{-1}t)^n \\
=S (I+ \Lambda t + \frac{1}{2}(\Lambda t)^2+\cdots+\frac{1}{n!}(\Lambda t)^n)S^{-1} \\
\Downarrow \\
\Lambda = \left[ \begin{matrix}
\lambda_1&& \\
&\lambda_2 \\
&&\ddots \\
&&&\lambda_n\end{matrix} \right] \\
e^{\Lambda t} = \left[ \begin{matrix}
e^{\lambda_1t}&& \\
&e^{\lambda_2t} \\
&&\ddots \\
&&&e^{\lambda_nt}\end{matrix} \right] \\
\Downarrow \\
e^{At}=Se^{\Lambda t}S^{-1}
\]

Solve Steps:

  1. Find eigenvalues and eigenvectors of A by solving \(det(A-\lambda I)=0\).

  2. Write u(0) as a combination \(c_1x_1 + c_2x_2 + \cdots + c_nx_n\) of the eigenvectors of A.

  3. Multiply each eigenvector \(x_i\) by its growth factor \(e^{\lambda_i t}\).

  4. The solution is the combinations of those pure solutions \(e^{\lambda t}x\).

    \[\frac{du}{dt} = Au \\
    u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2 + \cdots + c_ne^{\lambda_n t}x_n
    \]

example:

\[\frac{du_1}{dt} = -u_1 + 2u_2 \\
\frac{du_2}{dt} = u_1 - 2u_2 \\
\Downarrow step1 \\
u' = Au = \left[ \begin{matrix} -1&2 \\ 1&-2 \end{matrix} \right] u \\
\lambda_1 = 0, x_1 = \left[ \begin{matrix} 2\\1 \end{matrix}\right] \\
\lambda_2 = -3, x_2 = \left[ \begin{matrix} -1\\1 \end{matrix}\right] \\
\Downarrow step2 \\
u(0) = \left[ \begin{matrix} 1\\0 \end{matrix} \right] =
c_1x_1 + c_2x_2 \\
c_1 = 1/3, c_2 = -1/3 \\
\Downarrow step3 \\
u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2
= 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right] -
1/3 e^{-3t}\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \\
\Downarrow steady \ \ state\\
u(\infty) = 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right]
\]

State:

  1. Stabillity : \(u(t) -> 0 (e^{\lambda t}->0, real\ \ part\ \ \lambda < 0)\)
  2. Steady State : \(\lambda_1 = 0\) and other real part \(\lambda's < 0\)
  3. Blow up if any real part \(\lambda > 0\)

Markov Matrices

keys:

  1. All entries >=0.
  2. All columns add to 1.
  3. \(\lambda =1\) is one of eigenvalues.
  4. All other \(|\lambda_i|<1\).
  5. \(u_k = A^{k}u_0 = c_1\lambda_1^{k}x_1 + c_2\lambda_2^{k}x_2 + \cdots + c_n\lambda_n^{k}x_n \rightarrow c_1x_1 \ \ (steady \ \ state)\)

example: people movement model

\(u_{k+1} = Au_{k}\),A is Markov Matrix.

\[\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k+1} =
\left [ \begin{matrix} 0.9&0.2 \\ 0.1&0.8 \end{matrix}\right]
\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k} \\
\Downarrow \\
\lambda_1 = 1, x_1=\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] \\
\lambda_2 = 0.7, x_2=\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \\
\]

if \(\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{0} = \left [ \begin{matrix} 0 \\ 1000 \end{matrix}\right]\) , and \(c_1=1000/3, c_2=2000/3\)

\(u_k = c_1\lambda_1^{k}x_1+c_2\lambda_2^{k}x_2 = \frac{1000}{3}1^{k}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] + \frac{2000}{3}0.7^{k}\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \rightarrow \frac{1000}{3}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right]\) (steady state)

?Projections and Fourier Series

Projections with orthonormal basis:

\[Q = \left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right],Q^{T}=Q^{-1}\\
V = x_1q_1 + x_2q_2 + \cdots + x_nq_n =
\left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right]
\left [ \begin{matrix} x_1\\x_2\\\vdots\\x_n \end{matrix}\right]
=QX \\
\Downarrow \\
Q^{-1}V = Q^{-1}QX \\
\Downarrow \\
Q^{T}V = X
\]

Fourier series:

\(f(x) = a_0 + a_1cosx + b_1sinx + a_2cos2x + b_2sin2x + \cdots + b_nsinnx\)

(\(1,cosx,sinx,cos2x,sin2x...\)) are basis of f(x)

check: \(f(x) = f(x+ 2\pi)\)

\(f^Tg = \int_{0}^{2\pi}f(x)g(x)dx=0\) with f(x) = 1,cosx,sinx,cos2x,sin2x..., g(x) = 1,cosx,sinx,cos2x,sin2x..., \(f(x) \neq g(x)\)

example:

\(\int_{0}^{2\pi}f(x)cosxdx= \int_{0}^{2\pi}(a_0cosx + a_1(cosx)^2 + b_1cosxsinx...)dx= a_1\int_{0}^{2\pi} (cosx)^2 dx = a_1\pi\)

\(a_1 = \frac{1}{\pi}\int_{0}^{2\pi}f(x)cosxdx\)

6.3 Special Matrix

6.3.1 Symmetric Matrices

keys:

  1. A symmetric matrix S has n real eigenvalues \(\lambda_i\) and n orthonormal eigenvectors \(q_1,q_2,...,q_n\).
  2. Every real symmetric S can be diagonalized: \(S=Q \Lambda Q^{-1} = Q \Lambda Q^{T} =\left[ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right]
    \left[ \begin{matrix}
    \lambda_1&& \\
    &\lambda_2 \\
    &&\ddots \\
    &&&\lambda_n\end{matrix} \right]
    \left[ \begin{matrix} q_1^{T}\\q_2^{T}\\\vdots\\q_n^{T} \end{matrix}\right]\).
  3. The number of positive eigenvalues of S equals the number of positive pivots.
  4. Antisymmetric matrices \(A = A^{-T}\) have imaginary \(\lambda's\) and orthonormal (complex) q's.

example:

\[S = \left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right] \\
S-\lambda I = \left[ \begin{matrix} 1-\lambda&2 \\ 2&4-\lambda \end{matrix}\right]\\
\Downarrow\\
\lambda_1 = 0, x_1=\left[ \begin{matrix} 2 \\ -1 \end{matrix}\right] \\
\lambda_2 = 5, x_2=\left[ \begin{matrix} 1 \\ 2 \end{matrix}\right] \\
\Downarrow\\
Q^{-1}SQ = \frac{1}{\sqrt{5}}
\left[ \begin{matrix} 2&-1 \\ 1&2 \end{matrix}\right]
\left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right]
\frac{1}{\sqrt{5}}\left[ \begin{matrix} 2&1 \\ -1&2 \end{matrix}\right]
=\left[ \begin{matrix} 0&0 \\ 0&5 \end{matrix}\right] = \Lambda
\]

6.3.2 Positive Definite Matrix

keys:

  1. Symmetric S : all eigenvalues > 0 \(\Leftrightarrow\) all pivots > 0 \(\Leftrightarrow\) all upper left determinants > 0

  2. The Symmetric S is the postive definite : \(x^TSx > 0\) for all vectors \(x\neq0\).

  3. \(A^TA\) is positive definite matrix.

    proof: A is m by n

    \[x^T(A^TA)x = (Ax)^T(Ax) = |Ax|^2 >= 0 \\
    if \ \ A \ \ rank=n \\
    |Ax|^2 >0
    \]

    \(A^TA\) is positive definite matrix.

    \(A^TA\) is invertible, that \(\widehat{x} = (A^TA)^{-1}A^Tb\) work fine.

example:

\[S = \left [ \begin{matrix} 2&-1&0 \\ -1&2&-1 \\ 0&-1&2 \end{matrix}\right] \\
pivots : 2,3/2,4/3 >0 \\
left \ \ upper \ \ det : 2,3,4 >0 \\
eigenvalues : 2-\sqrt{2},2,2+\sqrt{2} \\
f = x^TSx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 > 0
\]

so A is positive definite matrix.

Minimum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} >0\)

Maximum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} <0\)

when \(f = x^TAx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 = 1\)

\(x^TAx=1\) describe an ellipse in 4D, with \(A=Q\Lambda Q^{T}\), Q are the directions of the principal axes, \(\Lambda\) are the lengths of those axes.

6.3.3 Similar Matrices

if \(B = M^{-1}AM\) for some matrix M, that A and B are similar.

example: \(A = \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right]\)

  1. Special example: A is similar to \(\Lambda\),\(S^{-1}A S = \Lambda \ 或 \ A=S^{-1}\Lambda S \Rightarrow \Lambda = \left [ \begin{matrix} 3&0 \\ 0&1 \end{matrix}\right]\);

  2. other :

    \[B = M^{-1}AM =\left [ \begin{matrix} 1&-4 \\ 0&1 \end{matrix}\right]
    \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right]
    \left [ \begin{matrix} 1&4 \\ 0&1 \end{matrix}\right]
    =
    \left [ \begin{matrix} -2&-15 \\ 1&6 \end{matrix}\right]
    \]

    \(A,\Lambda,B\) have the same \(\lambda's\).

    • A and \(\Lambda\) with same eigenvalues and eigenvectors.
    • A and B with same eigenvalues and numbers of eigenvectors, different eigenvectors.(\(X_B=M^{-1}X_A\))

?6.3.4 Jordan Theorem

Every square A is similar to a Jordan matrix:

Numbers of Jordan blocks is equal to numbers of eigenvectors.

\[J = \left [ \begin{matrix} J_1&&&\\&J_2&&\\&&\ddots&\\&&&J_d\end{matrix}\right]
\]

Good : \(J=\Lambda\),(d=n)

6. Eigenvalues and Eigenvectors的更多相关文章

  1. OpenCascade Eigenvalues and Eigenvectors of Square Matrix

    OpenCascade Eigenvalues and Eigenvectors of Square Matrix eryar@163.com Abstract. OpenCascade use th ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. 方差variance, 协方差covariance, 协方差矩阵covariance matrix | scatter matrix | weighted covariance | Eigenvalues and eigenvectors

    covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望 ...

  4. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  5. 【线性代数】6-1:特征值介绍(Introduction to Eigenvalues)

    title: [线性代数]6-1:特征值介绍(Introduction to Eigenvalues) categories: Mathematic Linear Algebra keywords: ...

  6. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  7. Function Set in OPEN CASCADE

    Function Set in OPEN CASCADE eryar@163.com Abstract. The common math algorithms library provides a C ...

  8. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  9. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  10. OpenCV中的矩阵操作

    函数 Description 说明 cvAdd Elementwise addition of two arrays 两个数组对应元素的和 cvAddS Elementwise addition of ...

随机推荐

  1. 安装MySql失败( Microsoft Visual C++ 2013 Runtime 64bit)

    参考资料:下载之家 提示你缺少什么版本就安装什么版本.64位或者32位. 文件下载地址:下载之家 不知道有没有失效,如果失效的话大家直接去下载之家搜索下载.

  2. 《HelloGitHub》第 95 期

    兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣.入门级的开源项目. https://github.com/521xueweiha ...

  3. Taurus.MVC WebMVC 入门开发教程4:数据列表绑定List<Model>

    前言: 在本篇 Taurus.MVC WebMVC 入门开发教程的第四篇文章中, 我们将学习如何实现数据列表的绑定,通过使用 List<Model> 来展示多个数据项. 我们将继续使用 T ...

  4. 【Azure Fabric Service】Service Fabric 托管群集通过 Connect-ServiceFabricCluster 连接时候报错 CertificatedNotMatched

    问题描述 Service Fabric 托管群集, 使用Key Vault中证书,把证书导入到本地安装后,使用该证书的 Thumbprint 作为指令 Connect-ServiceFabricClu ...

  5. Java 常用类 String类与其他结构之间的转换-----String 与 char[]之间的转换

    1 /* 2 String 与 char[]之间的转换 3 4 String----> char[]:调用String的toCharArray() 5 char[] ---->String ...

  6. Zabbix“专家坐诊”第195期问答汇总

    问题一 Q:麻烦请教一下zabbix服务器总是上报这几个告警,需要处理嘛?怎么处理? A:同步历史数据进程负载过高的话会影响到server的性能,建议增加服务器硬件配置. Q:是需要增加哪方面的配置, ...

  7. C#获取Description特性的扩展类

    C#中Description特性主要用于枚举和属性,方法比较简单,记录一下以便后期使用. 扩展类DescriptionExtension代码如下: using System; using System ...

  8. manjaroLinux-xfce4设置显示桌面快捷键

    1.打开窗口快捷键 2.寻找显示桌面 3.设置快捷键 啊!简单的我都不想写了,这不是为让像以前的"我"--小白,食用性更好一点吗?

  9. python的软连接的操作方法

    详细:切换python的版本 cd /usr/bin/ ls -l python* sudo rm -rf python sudo ln -s /usr/bin/python3.7 /usr/bin/ ...

  10. Base MYSQL Database create stored procedures resolve the Delimiter error

    Base MYSQL Database create stored procedures resolve the Delimiter error, It must be created using a ...