Keys:

  1. What are Eigenvalues and Eigenvectors?
  2. How to find Eigenvalues and Eigenvectors?
  3. Applications of Egenvalues and Eigenvectors:
    • Difference equation \(u_{k+1}=Au_k\)
    • Solution of \(\frac{du}{dt}=Au\)
    • Markov Matrices
    • Projections and Fourier Series
  4. Special Matrix
    • Symmetric Matrices
    • Positive Definite Matrix
    • Similar Matrices
    • Jordan Theorem

6.1 Introduction to Eigenvalues and Eigenvectors

keys:

  1. If X lies along the same direction as AX : \(AX = \lambda X\),then \(\lambda\) is eigenvalue and X is eigenvector.
  2. If \(AX=\lambda X\) then \(A^2X=\lambda^2 X\) and \(A^{-1}X=\lambda^{-1} X\) and \((A+cI)X=(\lambda + c) X\) : the same eigenvector X.
  3. If \(AX=\lambda X\) then \((A-\lambda I)X=0\) and \(A-\lambda I\) is singular and \(det(A-\lambda I)=0\) can find eigenvalues and eigenvectors.
  4. Check : \(\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn}\)
  5. Projection Matrix : \(\lambda = 1 \ and \ 0\);Reflections Matrix : \(\lambda = 1 \ and \ -1\);Rotations Matrix : \(\lambda = e^{i \theta} \ and \ e^{-i \theta}\)。

The Equation for the Eigenvalues and Eigenvectors

  1. Compute the determinant of \(A-\lambda I\).
  2. Find the roots of the polynomial of the determinant of \(A-\lambda I\),by solving det(\(A-\lambda I\)) = 0.
  3. For each eigenvalue \(\lambda\),solve \((A-\lambda I)X = 0\) to find an eigenvector X.

example:

\[A = \left[ \begin{matrix} 0&1 \\ 1&0 \end{matrix} \right] \\
\Downarrow \\
solve \ \ characteristic \ \ equation \\
det (A-\lambda I) = \left | \begin{matrix} -\lambda&1 \\ 1&-\lambda \end{matrix} \right| \\
\lambda_1 = 1 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\
\lambda_2 = -1 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\
check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 0,\ \ \lambda_1 \lambda_2 = detA = -1
\\
\]
\[B = \left[ \begin{matrix} 3&1 \\ 1&3 \end{matrix} \right] \\
\Downarrow \\
solve \ \ characteristic \ \ equation \\
det (B-\lambda I) = \left | \begin{matrix} 3-\lambda&1 \\ 1&3-\lambda \end{matrix} \right| \\
\lambda_1 = 4 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\
\lambda_2 = 2 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\
check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 6,\ \ \lambda_1 \lambda_2 = detB = 8
\\
\]

If \(AX=\lambda X\),the \((A+nI)X = \lambda X + nIX = (\lambda + n)X\);If eigenvectors of A is the same as eigenvectors of B, the \((A+B)X=(\lambda_{A} + \lambda_{B})X\).

Diagonalizing a Matrix

Eigenvectors of A for n different \(\lambda's\) are independent.Then we can diagonalize A.

The columns of X are eigenvectors.

So:

\[AX \\
= A \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \\
= \left[ \begin{matrix} \lambda_1x_1&\lambda_2x_2&\cdots&\lambda_2x_n\end{matrix} \right] \\
= \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \left[ \begin{matrix} \lambda_1&& \\
&\ddots&\\
&&\lambda_n
\end{matrix} \right] \\
=X\Lambda \\
\Downarrow \\
AX=X\Lambda \\
X^{-1}AX=\Lambda \ or \ A=X\Lambda X^{-1} \\
\Downarrow \\
A^k =(X\Lambda X^{-1})_1(X\Lambda X^{-1})_2\cdots (X\Lambda X^{-1})_k = X\Lambda^k X^{-1}
\]

example:

\[\left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right] =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right]
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right]
\\
\left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right]^k =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right]^k
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right] =
\left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right]
\left[ \begin{matrix} 1^k&0 \\ 0&6^k \end{matrix} \right]
\left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right]
\]

When all \(|\lambda_i| < 0\),the \(A^k \rightarrow 0\).

6.2 Applications of Eigenvalue and Eigenvector

Difference equation \(u_{k+1} = Au_k\)

Matrix Powers \(A^k\) : \(u_{k}=A^ku_0 = (X \Lambda X^{-1})(X \Lambda X^{-1})\cdots(X \Lambda X^{-1})u_0=X \Lambda^k X^{-1}u_0\)

step1 :

\[u_0 = c_1x_1 + c_2x_2 + \cdots + c_nx_n =
\left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right]
\left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] = Xc \\
\Downarrow \\
c = X^{-1}u_0
\]

step2~3:

\[u_{k}=A^ku_0 = X \Lambda^k X^{-1} u_0 = X \Lambda^k c =
\left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right]
\left[ \begin{matrix}
(\lambda_1)^k&& \\
&(\lambda_2)^k \\
&&\ddots \\
&&&(\lambda_n)^k\end{matrix} \right]
\left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] \\
\Downarrow \\
u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2 + \cdots + c_n(\lambda_n)^kx_n
\]

It solves \(u_{k+1} = Au_k\)

example:

Fibonacci Numbers: 0,1,1,2,3,5,8,13...

\(F_{k+2}=F_{k+1}+F_{k}\)

Let \(u_k = \left[ \begin{matrix} F_{k+1}\\F_k \end{matrix}\right]\)

\[F_{k+2} = F_{k+1} + F_{k} \\
F_{k+1} = F_{k+1} \\
\Downarrow \\
u_{k+1}= \left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right]u_{k} \\
\Downarrow \\
A=\left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right] \\
det(A-\lambda I) = 0 \\
\Downarrow \\
\lambda_1 = \frac{1+\sqrt{5}}{2} =1.618, \ \
x_1=\left[ \begin{matrix} \lambda_1\\1\end{matrix}\right] \\
\lambda_2 = \frac{1-\sqrt{5}}{2} =-0.618, \ \
x_2=\left[ \begin{matrix} \lambda_2\\1\end{matrix}\right] \\
and \\
u_0 = \left[ \begin{matrix} 1\\0 \end{matrix}\right] =
c_1x_1 + c_2x_2
\rightarrow
c_1 = \frac{1}{\lambda_1 - \lambda_2}, c_2 = \frac{1}{\lambda_2 - \lambda_1} \\
\Downarrow \\
u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2\\
u_{100} = \frac{(\lambda_1)^{100}x_1-(\lambda_2)^{100}x_2}{\lambda_1 - \lambda_2}
\]

Solution of du/dt = Au

key : \(e^{At}\)

Taylor Series : \(e^x = 1 + x + \frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n\)

S is eigenvectors matrix of A.

\[e^{At} = I + At + \frac{1}{2}(At)^2+\cdots+\frac{1}{n!}(At)^n \\
A = S\Lambda S^{-1} \\
I = SS^{-1} \\
\Downarrow \\
e^{At} = SS^{-1} + S\Lambda S^{-1}t + \frac{1}{2}(S\Lambda S^{-1}t)^2+\cdots+\frac{1}{n!}(S\Lambda S^{-1}t)^n \\
=S (I+ \Lambda t + \frac{1}{2}(\Lambda t)^2+\cdots+\frac{1}{n!}(\Lambda t)^n)S^{-1} \\
\Downarrow \\
\Lambda = \left[ \begin{matrix}
\lambda_1&& \\
&\lambda_2 \\
&&\ddots \\
&&&\lambda_n\end{matrix} \right] \\
e^{\Lambda t} = \left[ \begin{matrix}
e^{\lambda_1t}&& \\
&e^{\lambda_2t} \\
&&\ddots \\
&&&e^{\lambda_nt}\end{matrix} \right] \\
\Downarrow \\
e^{At}=Se^{\Lambda t}S^{-1}
\]

Solve Steps:

  1. Find eigenvalues and eigenvectors of A by solving \(det(A-\lambda I)=0\).

  2. Write u(0) as a combination \(c_1x_1 + c_2x_2 + \cdots + c_nx_n\) of the eigenvectors of A.

  3. Multiply each eigenvector \(x_i\) by its growth factor \(e^{\lambda_i t}\).

  4. The solution is the combinations of those pure solutions \(e^{\lambda t}x\).

    \[\frac{du}{dt} = Au \\
    u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2 + \cdots + c_ne^{\lambda_n t}x_n
    \]

example:

\[\frac{du_1}{dt} = -u_1 + 2u_2 \\
\frac{du_2}{dt} = u_1 - 2u_2 \\
\Downarrow step1 \\
u' = Au = \left[ \begin{matrix} -1&2 \\ 1&-2 \end{matrix} \right] u \\
\lambda_1 = 0, x_1 = \left[ \begin{matrix} 2\\1 \end{matrix}\right] \\
\lambda_2 = -3, x_2 = \left[ \begin{matrix} -1\\1 \end{matrix}\right] \\
\Downarrow step2 \\
u(0) = \left[ \begin{matrix} 1\\0 \end{matrix} \right] =
c_1x_1 + c_2x_2 \\
c_1 = 1/3, c_2 = -1/3 \\
\Downarrow step3 \\
u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2
= 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right] -
1/3 e^{-3t}\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \\
\Downarrow steady \ \ state\\
u(\infty) = 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right]
\]

State:

  1. Stabillity : \(u(t) -> 0 (e^{\lambda t}->0, real\ \ part\ \ \lambda < 0)\)
  2. Steady State : \(\lambda_1 = 0\) and other real part \(\lambda's < 0\)
  3. Blow up if any real part \(\lambda > 0\)

Markov Matrices

keys:

  1. All entries >=0.
  2. All columns add to 1.
  3. \(\lambda =1\) is one of eigenvalues.
  4. All other \(|\lambda_i|<1\).
  5. \(u_k = A^{k}u_0 = c_1\lambda_1^{k}x_1 + c_2\lambda_2^{k}x_2 + \cdots + c_n\lambda_n^{k}x_n \rightarrow c_1x_1 \ \ (steady \ \ state)\)

example: people movement model

\(u_{k+1} = Au_{k}\),A is Markov Matrix.

\[\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k+1} =
\left [ \begin{matrix} 0.9&0.2 \\ 0.1&0.8 \end{matrix}\right]
\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k} \\
\Downarrow \\
\lambda_1 = 1, x_1=\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] \\
\lambda_2 = 0.7, x_2=\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \\
\]

if \(\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{0} = \left [ \begin{matrix} 0 \\ 1000 \end{matrix}\right]\) , and \(c_1=1000/3, c_2=2000/3\)

\(u_k = c_1\lambda_1^{k}x_1+c_2\lambda_2^{k}x_2 = \frac{1000}{3}1^{k}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] + \frac{2000}{3}0.7^{k}\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \rightarrow \frac{1000}{3}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right]\) (steady state)

?Projections and Fourier Series

Projections with orthonormal basis:

\[Q = \left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right],Q^{T}=Q^{-1}\\
V = x_1q_1 + x_2q_2 + \cdots + x_nq_n =
\left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right]
\left [ \begin{matrix} x_1\\x_2\\\vdots\\x_n \end{matrix}\right]
=QX \\
\Downarrow \\
Q^{-1}V = Q^{-1}QX \\
\Downarrow \\
Q^{T}V = X
\]

Fourier series:

\(f(x) = a_0 + a_1cosx + b_1sinx + a_2cos2x + b_2sin2x + \cdots + b_nsinnx\)

(\(1,cosx,sinx,cos2x,sin2x...\)) are basis of f(x)

check: \(f(x) = f(x+ 2\pi)\)

\(f^Tg = \int_{0}^{2\pi}f(x)g(x)dx=0\) with f(x) = 1,cosx,sinx,cos2x,sin2x..., g(x) = 1,cosx,sinx,cos2x,sin2x..., \(f(x) \neq g(x)\)

example:

\(\int_{0}^{2\pi}f(x)cosxdx= \int_{0}^{2\pi}(a_0cosx + a_1(cosx)^2 + b_1cosxsinx...)dx= a_1\int_{0}^{2\pi} (cosx)^2 dx = a_1\pi\)

\(a_1 = \frac{1}{\pi}\int_{0}^{2\pi}f(x)cosxdx\)

6.3 Special Matrix

6.3.1 Symmetric Matrices

keys:

  1. A symmetric matrix S has n real eigenvalues \(\lambda_i\) and n orthonormal eigenvectors \(q_1,q_2,...,q_n\).
  2. Every real symmetric S can be diagonalized: \(S=Q \Lambda Q^{-1} = Q \Lambda Q^{T} =\left[ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right]
    \left[ \begin{matrix}
    \lambda_1&& \\
    &\lambda_2 \\
    &&\ddots \\
    &&&\lambda_n\end{matrix} \right]
    \left[ \begin{matrix} q_1^{T}\\q_2^{T}\\\vdots\\q_n^{T} \end{matrix}\right]\).
  3. The number of positive eigenvalues of S equals the number of positive pivots.
  4. Antisymmetric matrices \(A = A^{-T}\) have imaginary \(\lambda's\) and orthonormal (complex) q's.

example:

\[S = \left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right] \\
S-\lambda I = \left[ \begin{matrix} 1-\lambda&2 \\ 2&4-\lambda \end{matrix}\right]\\
\Downarrow\\
\lambda_1 = 0, x_1=\left[ \begin{matrix} 2 \\ -1 \end{matrix}\right] \\
\lambda_2 = 5, x_2=\left[ \begin{matrix} 1 \\ 2 \end{matrix}\right] \\
\Downarrow\\
Q^{-1}SQ = \frac{1}{\sqrt{5}}
\left[ \begin{matrix} 2&-1 \\ 1&2 \end{matrix}\right]
\left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right]
\frac{1}{\sqrt{5}}\left[ \begin{matrix} 2&1 \\ -1&2 \end{matrix}\right]
=\left[ \begin{matrix} 0&0 \\ 0&5 \end{matrix}\right] = \Lambda
\]

6.3.2 Positive Definite Matrix

keys:

  1. Symmetric S : all eigenvalues > 0 \(\Leftrightarrow\) all pivots > 0 \(\Leftrightarrow\) all upper left determinants > 0

  2. The Symmetric S is the postive definite : \(x^TSx > 0\) for all vectors \(x\neq0\).

  3. \(A^TA\) is positive definite matrix.

    proof: A is m by n

    \[x^T(A^TA)x = (Ax)^T(Ax) = |Ax|^2 >= 0 \\
    if \ \ A \ \ rank=n \\
    |Ax|^2 >0
    \]

    \(A^TA\) is positive definite matrix.

    \(A^TA\) is invertible, that \(\widehat{x} = (A^TA)^{-1}A^Tb\) work fine.

example:

\[S = \left [ \begin{matrix} 2&-1&0 \\ -1&2&-1 \\ 0&-1&2 \end{matrix}\right] \\
pivots : 2,3/2,4/3 >0 \\
left \ \ upper \ \ det : 2,3,4 >0 \\
eigenvalues : 2-\sqrt{2},2,2+\sqrt{2} \\
f = x^TSx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 > 0
\]

so A is positive definite matrix.

Minimum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} >0\)

Maximum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} <0\)

when \(f = x^TAx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 = 1\)

\(x^TAx=1\) describe an ellipse in 4D, with \(A=Q\Lambda Q^{T}\), Q are the directions of the principal axes, \(\Lambda\) are the lengths of those axes.

6.3.3 Similar Matrices

if \(B = M^{-1}AM\) for some matrix M, that A and B are similar.

example: \(A = \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right]\)

  1. Special example: A is similar to \(\Lambda\),\(S^{-1}A S = \Lambda \ 或 \ A=S^{-1}\Lambda S \Rightarrow \Lambda = \left [ \begin{matrix} 3&0 \\ 0&1 \end{matrix}\right]\);

  2. other :

    \[B = M^{-1}AM =\left [ \begin{matrix} 1&-4 \\ 0&1 \end{matrix}\right]
    \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right]
    \left [ \begin{matrix} 1&4 \\ 0&1 \end{matrix}\right]
    =
    \left [ \begin{matrix} -2&-15 \\ 1&6 \end{matrix}\right]
    \]

    \(A,\Lambda,B\) have the same \(\lambda's\).

    • A and \(\Lambda\) with same eigenvalues and eigenvectors.
    • A and B with same eigenvalues and numbers of eigenvectors, different eigenvectors.(\(X_B=M^{-1}X_A\))

?6.3.4 Jordan Theorem

Every square A is similar to a Jordan matrix:

Numbers of Jordan blocks is equal to numbers of eigenvectors.

\[J = \left [ \begin{matrix} J_1&&&\\&J_2&&\\&&\ddots&\\&&&J_d\end{matrix}\right]
\]

Good : \(J=\Lambda\),(d=n)

6. Eigenvalues and Eigenvectors的更多相关文章

  1. OpenCascade Eigenvalues and Eigenvectors of Square Matrix

    OpenCascade Eigenvalues and Eigenvectors of Square Matrix eryar@163.com Abstract. OpenCascade use th ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. 方差variance, 协方差covariance, 协方差矩阵covariance matrix | scatter matrix | weighted covariance | Eigenvalues and eigenvectors

    covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望 ...

  4. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  5. 【线性代数】6-1:特征值介绍(Introduction to Eigenvalues)

    title: [线性代数]6-1:特征值介绍(Introduction to Eigenvalues) categories: Mathematic Linear Algebra keywords: ...

  6. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  7. Function Set in OPEN CASCADE

    Function Set in OPEN CASCADE eryar@163.com Abstract. The common math algorithms library provides a C ...

  8. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  9. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  10. OpenCV中的矩阵操作

    函数 Description 说明 cvAdd Elementwise addition of two arrays 两个数组对应元素的和 cvAddS Elementwise addition of ...

随机推荐

  1. 【Azure 应用服务】更便捷的方式抓取Azure App Service for Windows的网络包

    问题描述 在之前的一篇博文中,介绍了在App Service中抓取网络日志: 抓取Windows的网络包:[应用服务 App Service]App Service中抓取网络日志 抓取Linux的网络 ...

  2. Binlog分析利器-binlog_summary.py

    ​Binlog中,除了具体的SQL,其实,还包含了很多有价值的信息,如, 事务的开始时间. 事务的结束时间. 事务的开始位置点. 事务的结束位置点. 操作的开始时间(一个事务通常会包含多个操作). 表 ...

  3. 使用Order By NULL 解决 group by后自动排序,优化Sql性能

    使用Order By NULL 解决 group by后自动排序,优化Sql性能 对于 Group by 后的结果,Mysql搜索引擎会将结果按照Group by 的字段按照升序,自动排序,例如: t ...

  4. 用CFF Explorer隐藏文件格式

    1.首先我们加载两个PNG文件,可以看到 文件格式头部是一样的,我们如何将一个PDF文件格式改成PNG,修改之后的文件虽然含有图片的文件头格式,但是并不能打开. 将PNG的文件头复制写入到PDF文件头 ...

  5. element_ui实现表格内套表单,点击可以编辑

    <template> <div class="app-container"> <el-table :data="list" str ...

  6. k8s中port-forward 、service的nodeport与ingress区别

    在Kubernetes中,port-forward.Service的NodePort和Ingress都是用于将外部流量引入集群内部的方法,但它们在使用场景.实现方式和功能上有所不同. port-for ...

  7. 基于可穿戴的GPS定位存储模块方案特色解析

    前记   GPS作为一个位置定位手段,在日常生活中扮演着非常重要的角色.在研发动物可穿戴产品的同时.团队一直在做产品和模块标准化的事情,尽量把研发出来的东西标准化.按照任老板的说法,在追求理想主义的路 ...

  8. 基于Apollo3 Blue MCU芯片的可穿戴产品解决方案开发之六轴加速度传感器适配

    一 前记 MPU-60X0 是全球首例9 轴运动处理传感器.它集成了3 轴MEMS 陀螺仪,3 轴MEMS加速度计,以及一个可扩展的数字运动处理器DMP(Digital Motion Processo ...

  9. day06-Java流程控制

    Java流程控制 1.用户交互Scanner java.util.Scanner是Java5的新特征,我们可以通过Scannner类来获取用户的输入. 基本语法: Scanner s = new Sc ...

  10. 记录一次运行vue项目一直不成功的经历

    参考:https://blog.csdn.net/qq_17162169/article/details/115718002 如果前端项目一直起不来,直接删除扩展文件夹试试 // npm安装vue y ...