1 前言

基于keras的双层LSTM网络和双向LSTM网络中,都会用到 LSTM层,主要参数如下:

LSTM(units,input_shape,return_sequences=False)
  • units:隐藏层神经元个数
  • input_shape=(time_step, input_feature):time_step是序列递归的步数,input_feature是输入特征维数
  • return_sequences: 取值为True,表示每个时间步的值都返回;取值为False,表示只返回最后一个时间步的取值

本文以MNIST手写数字分类为例,讲解双层LSTM网络和双向LSTM网络的实现。关于MNIST数据集的说明,见使用TensorFlow实现MNIST数据集分类

笔者工作空间如下:

代码资源见--> 双隐层LSTM和双向LSTM

2 双层LSTM网络

双层LSTM网络结构

DoubleLSTM.py

from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Dense,LSTM #载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels,
valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels,
test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y #双层LSTM模型
def DoubleLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y):
#创建模型
model=Sequential()
model.add(LSTM(64,input_shape=(28,28),return_sequences=True)) #返回所有节点的输出
model.add(LSTM(32,return_sequences=False)) #返回最后一个节点的输出
model.add(Dense(10,activation='softmax'))
#查看网络结构
model.summary()
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=15,verbose=2,validation_data=(valid_x,valid_y))
#评估模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2)
print('test_loss:',pre[0],'- test_acc:',pre[1]) train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
DoubleLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y)

每层网络输出尺寸:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_5 (LSTM) (None, 28, 64) 23808
_________________________________________________________________
lstm_6 (LSTM) (None, 32) 12416
_________________________________________________________________
dense_5 (Dense) (None, 10) 330
=================================================================
Total params: 36,554
Trainable params: 36,554
Non-trainable params: 0

由于第一个LSTM层设置了 return_sequences=True,每个节点的输出值都会返回,因此输出尺寸为 (None, 28, 64)

由于第二个LSTM层设置了 return_sequences=False,只有最后一个节点的输出值会返回,因此输出尺寸为 (None, 32)

训练结果:

Epoch 13/15
- 17s - loss: 0.0684 - acc: 0.9796 - val_loss: 0.0723 - val_acc: 0.9792
Epoch 14/15
- 18s - loss: 0.0633 - acc: 0.9811 - val_loss: 0.0659 - val_acc: 0.9822
Epoch 15/15
- 17s - loss: 0.0597 - acc: 0.9821 - val_loss: 0.0670 - val_acc: 0.9812
test_loss: 0.0714278114028275 - test_acc: 0.9789000034332276

3 双向LSTM网络

双向LSTM网络结构

from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Dense,LSTM,Bidirectional #载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels,
valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels,
test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y #双向LSTM模型
def BiLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y):
#创建模型
model=Sequential()
lstm=LSTM(64,input_shape=(28,28),return_sequences=False) #返回最后一个节点的输出
model.add(Bidirectional(lstm)) #双向LSTM
model.add(Dense(10,activation='softmax'))
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=15,verbose=2,validation_data=(valid_x,valid_y))
#查看网络结构
model.summary()
#评估模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2)
print('test_loss:',pre[0],'- test_acc:',pre[1]) train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
BiLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y)

每层网络输出尺寸:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bidirectional_5 (Bidirection (None, 128) 47616
_________________________________________________________________
dense_6 (Dense) (None, 10) 1290
=================================================================
Total params: 48,906
Trainable params: 48,906
Non-trainable params: 0

由于LSTM层设置了 return_sequences=False,只有最后一个节点的输出值会返回,每层LSTM返回64维向量,两层合并共128维,因此输出尺寸为 (None, 128)

训练结果:

Epoch 13/15
- 22s - loss: 0.0512 - acc: 0.9839 - val_loss: 0.0632 - val_acc: 0.9790
Epoch 14/15
- 22s - loss: 0.0453 - acc: 0.9865 - val_loss: 0.0534 - val_acc: 0.9832
Epoch 15/15
- 22s - loss: 0.0418 - acc: 0.9869 - val_loss: 0.0527 - val_acc: 0.9830
test_loss: 0.06457789749838412 - test_acc: 0.9795000076293945

​ 声明:本文转自基于keras的双层LSTM网络和双向LSTM网络

基于keras的双层LSTM网络和双向LSTM网络的更多相关文章

  1. 使用Keras进行深度学习:(六)LSTM和双向LSTM讲解及实践

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 长短期记忆(Long Short Term Memory, ...

  2. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

  3. LSTM和双向LSTM讲解及实践

    LSTM和双向LSTM讲解及实践 目录 RNN的长期依赖问题LSTM原理讲解双向LSTM原理讲解Keras实现LSTM和双向LSTM 一.RNN的长期依赖问题 在上篇文章中介绍的循环神经网络RNN在训 ...

  4. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  5. 基于双向LSTM和迁移学习的seq2seq核心实体识别

    http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”, ...

  6. 【中文分词系列】 4. 基于双向LSTM的seq2seq字标注

    http://spaces.ac.cn/archives/3924/ 关于字标注法 上一篇文章谈到了分词的字标注法.要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了.在我看来,字 ...

  7. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  8. NLP(十九) 双向LSTM情感分类模型

    使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pa ...

  9. 基于keras实现的中文实体识别

    1.简介 NER(Named Entity Recognition,命名实体识别)又称作专名识别,是自然语言处理中常见的一项任务,使用的范围非常广.命名实体通常指的是文本中具有特别意义或者指代性非常强 ...

  10. [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88)

    [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88) 个人主页--> https://xiaosongshine.github.io/ 项目g ...

随机推荐

  1. [javaee] - tomcat 下载和配置环境变量

    以tomcat9为例 第一步 :下载到本地并解压文件 解压后: 第二步:配置环境变量,在系统变量中添加  CATALINE_HOME  ,路径为tomcat的目录 启动tomcat , 启动之后不要关 ...

  2. Go-值传递&引用传递

    值类型和引用类型 值类型关注其值 引用类型关注其指针 值类型和引用类型区别在于传递值的时候拷贝的对象不同,值传递拷贝是变量的值,引用传递拷贝的是变量的指针 拷贝 -- 传递值 赋值 函数调用 初始化 ...

  3. [转帖]AES算法(五)GCM工作模式

    https://zhuanlan.zhihu.com/p/376692295 在以前介绍的基本工作模式中,ECB.CFB.OFB 三种模式可以解决 ECB 模式中相同明文生成相同密文的缺陷,CTR 又 ...

  4. [转帖]Kubernetes-15:一文详解Pod、Node调度规则(亲和性、污点、容忍、固定节点)

    https://www.cnblogs.com/v-fan/p/13609124.html Kubernetes Pod调度说明 简介 Scheduler 是 Kubernetes 的调度器,主要任务 ...

  5. [转帖]VMWare ESXi中,不同的虚拟网卡性能竟然能相差三倍!

    https://zhuanlan.zhihu.com/p/525656364 正文共:1024 字 11 图,预估阅读时间:1 分钟 在上个实验中(VPP使用DPDK纳管主机网卡),我们已经初步实现了 ...

  6. 一个简单的科普-延迟与RT时间

    一个简单的科普-延迟与RT时间 背景 发现稍微一复杂就没人看. 这次像是写一个简单的科普文章. 主要说一下网络延迟还有网络的响应时间. 这里想通过一个题目进行引申. 如果Skylink全球商用: 中国 ...

  7. [转帖]Linux系统下cpio命令详解

    简介 cpio主要是解压或者将文件压缩到指定文件中即copy-in和copy-out模式. 参数说明 参数 参数说明 -i copy-in模式,解压文件 -o copy-out模式,即压缩文件 -d ...

  8. [转帖]龙芯总强调同频性能,是因奔腾4要到25+GHz才比得上酷睿11代单核

      https://baijiahao.baidu.com/s?id=1734320620568707041 闲话不说,先上图,是SPEC CPU 2006 int(单任务)测试的成绩: 上图中的成绩 ...

  9. Oracle 设置白名单过滤

    最近有一个需求  要求开发人员不能随便连接测试的数据库 又不想太过复杂,部分人还得进行连结. 查了下往上是有方案的: 就是 TCP_VALIDNODE_CHECKING 参数 解决方法和说明如下 来源 ...

  10. 总结: Redis 查看key大小的简单总结

    Redis 查看key大小的简单总结 第一步: 安装rdbtools 吐槽一下 python 非常不熟悉 第一步 安装epel以及python等工具 yum install epel-release ...