1 前言

基于keras的双层LSTM网络和双向LSTM网络中,都会用到 LSTM层,主要参数如下:

LSTM(units,input_shape,return_sequences=False)
  • units:隐藏层神经元个数
  • input_shape=(time_step, input_feature):time_step是序列递归的步数,input_feature是输入特征维数
  • return_sequences: 取值为True,表示每个时间步的值都返回;取值为False,表示只返回最后一个时间步的取值

本文以MNIST手写数字分类为例,讲解双层LSTM网络和双向LSTM网络的实现。关于MNIST数据集的说明,见使用TensorFlow实现MNIST数据集分类

笔者工作空间如下:

代码资源见--> 双隐层LSTM和双向LSTM

2 双层LSTM网络

双层LSTM网络结构

DoubleLSTM.py

from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Dense,LSTM #载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels,
valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels,
test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y #双层LSTM模型
def DoubleLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y):
#创建模型
model=Sequential()
model.add(LSTM(64,input_shape=(28,28),return_sequences=True)) #返回所有节点的输出
model.add(LSTM(32,return_sequences=False)) #返回最后一个节点的输出
model.add(Dense(10,activation='softmax'))
#查看网络结构
model.summary()
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=15,verbose=2,validation_data=(valid_x,valid_y))
#评估模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2)
print('test_loss:',pre[0],'- test_acc:',pre[1]) train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
DoubleLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y)

每层网络输出尺寸:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_5 (LSTM) (None, 28, 64) 23808
_________________________________________________________________
lstm_6 (LSTM) (None, 32) 12416
_________________________________________________________________
dense_5 (Dense) (None, 10) 330
=================================================================
Total params: 36,554
Trainable params: 36,554
Non-trainable params: 0

由于第一个LSTM层设置了 return_sequences=True,每个节点的输出值都会返回,因此输出尺寸为 (None, 28, 64)

由于第二个LSTM层设置了 return_sequences=False,只有最后一个节点的输出值会返回,因此输出尺寸为 (None, 32)

训练结果:

Epoch 13/15
- 17s - loss: 0.0684 - acc: 0.9796 - val_loss: 0.0723 - val_acc: 0.9792
Epoch 14/15
- 18s - loss: 0.0633 - acc: 0.9811 - val_loss: 0.0659 - val_acc: 0.9822
Epoch 15/15
- 17s - loss: 0.0597 - acc: 0.9821 - val_loss: 0.0670 - val_acc: 0.9812
test_loss: 0.0714278114028275 - test_acc: 0.9789000034332276

3 双向LSTM网络

双向LSTM网络结构

from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Dense,LSTM,Bidirectional #载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels,
valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels,
test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y #双向LSTM模型
def BiLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y):
#创建模型
model=Sequential()
lstm=LSTM(64,input_shape=(28,28),return_sequences=False) #返回最后一个节点的输出
model.add(Bidirectional(lstm)) #双向LSTM
model.add(Dense(10,activation='softmax'))
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=15,verbose=2,validation_data=(valid_x,valid_y))
#查看网络结构
model.summary()
#评估模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2)
print('test_loss:',pre[0],'- test_acc:',pre[1]) train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
BiLSTM(train_x,train_y,valid_x,valid_y,test_x,test_y)

每层网络输出尺寸:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bidirectional_5 (Bidirection (None, 128) 47616
_________________________________________________________________
dense_6 (Dense) (None, 10) 1290
=================================================================
Total params: 48,906
Trainable params: 48,906
Non-trainable params: 0

由于LSTM层设置了 return_sequences=False,只有最后一个节点的输出值会返回,每层LSTM返回64维向量,两层合并共128维,因此输出尺寸为 (None, 128)

训练结果:

Epoch 13/15
- 22s - loss: 0.0512 - acc: 0.9839 - val_loss: 0.0632 - val_acc: 0.9790
Epoch 14/15
- 22s - loss: 0.0453 - acc: 0.9865 - val_loss: 0.0534 - val_acc: 0.9832
Epoch 15/15
- 22s - loss: 0.0418 - acc: 0.9869 - val_loss: 0.0527 - val_acc: 0.9830
test_loss: 0.06457789749838412 - test_acc: 0.9795000076293945

​ 声明:本文转自基于keras的双层LSTM网络和双向LSTM网络

基于keras的双层LSTM网络和双向LSTM网络的更多相关文章

  1. 使用Keras进行深度学习:(六)LSTM和双向LSTM讲解及实践

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 长短期记忆(Long Short Term Memory, ...

  2. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

  3. LSTM和双向LSTM讲解及实践

    LSTM和双向LSTM讲解及实践 目录 RNN的长期依赖问题LSTM原理讲解双向LSTM原理讲解Keras实现LSTM和双向LSTM 一.RNN的长期依赖问题 在上篇文章中介绍的循环神经网络RNN在训 ...

  4. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  5. 基于双向LSTM和迁移学习的seq2seq核心实体识别

    http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”, ...

  6. 【中文分词系列】 4. 基于双向LSTM的seq2seq字标注

    http://spaces.ac.cn/archives/3924/ 关于字标注法 上一篇文章谈到了分词的字标注法.要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了.在我看来,字 ...

  7. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  8. NLP(十九) 双向LSTM情感分类模型

    使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pa ...

  9. 基于keras实现的中文实体识别

    1.简介 NER(Named Entity Recognition,命名实体识别)又称作专名识别,是自然语言处理中常见的一项任务,使用的范围非常广.命名实体通常指的是文本中具有特别意义或者指代性非常强 ...

  10. [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88)

    [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88) 个人主页--> https://xiaosongshine.github.io/ 项目g ...

随机推荐

  1. -- spi flash 擦除接口调用HAL库不同函数的区别

    [描述] 在使用STM32F429操作W25Q128时,为验证flash工作正常,做简单的读写数据校验,在擦除接口中使用 HAL_SPI_Transmit 方法一直工作异常,使用 HAL_SPI_Tr ...

  2. [转帖]ChatGPT发展历程、原理、技术架构详解和产业未来 (收录于先进AI技术深度解读)

    https://zhuanlan.zhihu.com/p/590655677 陈巍谈芯::本文将介绍ChatGPT的特点.功能.技术架构.局限.产业应用.投资机会和未来.作者本人曾担任华为系自然语言处 ...

  3. CS231N Assignment1 softmax 笔记

    -为Softmax分类器实现完全矢量化的损失函数 -实现解析梯度完全矢量化的表达式 使用数值梯度检查实现结果 使用验证集调整学习率和正则化强度 使用SGD优化损失函数 可视化最终学习的权重 softm ...

  4. js中toString方法的三个作用

    toString方法的三个作用: 1.返回一个[表示对象]的[字符串] 2.检测对象的类型 Object.prototype.toString.call(arr)==="[object Ar ...

  5. Vue3中shallowReactive和shallowRef对数据进行非深度监听

    1.Vue3 中 ref 和 reactive 都是深度监听 默认情况下, 无论是通过 ref 还是 reactive 都是深度监听. 深度监听存在的问题: 如果数据量比较大,非常消耗性能. 有些时候 ...

  6. 【代码分享】使用 avx2 + 查表法,优化凯撒加密

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 接上一篇:[代码分享]使用 avx512 + 查表法,优化 ...

  7. 【小测试】rust中的无符号整数溢出

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 1.在编译阶段就可以识别出来的溢出 fn main(){ ...

  8. [LeetCode刷题记录]39 组合总和

    题目描述 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合.candidates 中的数字可以无限制 ...

  9. Gorm 数据库表迁移与表模型定义

    目录 一.Docker快速创建MySQL实例 1.1 创建 1.3 创建数据库 二.AutoMigrate介绍与使用 2.1 AutoMigrate介绍 2.2 AutoMigrate 基本使用 三. ...

  10. [1] 以逆向的角度来看流程控制语句——if

    [1] 以逆向的角度来看流程控制语句--if 1. if语句(单分支) ​ if语句转换的条件跳转指令与if语句的判断结果是相反的, 因为C语言是根据代码行的位置决定编译后二进制代码地址高低的,即低行 ...