题目链接

题目

题目描述

在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

1.路径上的所有点的出边所指向的点都直接或间接与终点连通。

2.在满足条件1的情况下使路径最短。

注意:图G中可能存在重边和自环,题目保证终点没有出边。

请你输出符合条件的路径的长度。

输入描述

第一行有两个用一个空格隔开的整数n和m,表示图有n个点和m条边。

接下来的m行每行2个整数x、y,之间用一个空格隔开,表示有一条边从点x指向点y。

最后一行有两个用一个空格隔开的整数s、t,表示起点为s,终点为t。

输出描述

输出只有一行,包含一个整数,表示满足题目描述的最短路径的长度。如果这样的路径不存在,输出-1。

示例1

输入

3 2
1 2
2 1
1 3

输出

-1

说明

如上图所示,箭头表示有向道路,圆点表示城市。起点1与终点3不连通,所以满足题目描述的路径不存在,故输出-1。

示例2

输入

6 6
1 2
1 3
2 6
2 5
4 5
3 4
1 5

输出

3

说明

如上图所示,满足条件的路径为1->3->4->5。注意点2不能在答案路径中,因为点2连了一条边到点6,而点6不与终点5连通。

备注

对于30%的数据,0< n≤10,0< m≤20;

对于60%的数据,0< n≤100,0< m≤2000;

对于100%的数据,0< n≤10,000,0< m≤200,000,0< x,y,s,t≤n,x≠t。

题解

知识点:BFS,图论。

显然用bfs,但与普通走迷宫不同的是,迷宫路径上的点的任意邻接点都必须也能通往终点,这意味着最短路径并非合法路径。

首先筛选出哪些点能通往终点,选择反向建图,从终点出发走迷宫走到的点都是可达终点的点,用 \(ck1[i]\) 表示编号 \(i\) 的点可以到达终点。

然后遍历每个点,如果是不可行点,将其在反向图意义下的邻接点全都排除。因为图是反向的我们无法找到正向图意义下的邻接点,从而无法从一个可达点找其邻接点是否不可达,因此反过来,把不可达点的反向邻接点都排除即可,因为不可达点是反向邻接点的正向邻接点。用 \(ck2[i]\) 表达这个点是否是满足条件的点。

随后在 \(ck2\) 的限制下遍历图找最短路即可。

时间复杂度 \(O(n+m)\)

空间复杂度 \(O(n+m)\)

代码

#include <bits/stdc++.h>

using namespace std;

vector<int> g[10007];
bool ck1[10007], ck2[10007];
int step[10007]; void bfsck(int st) {
queue<int> q;
q.push(st);
ck1[st] = 1;
while (!q.empty()) {
int cur = q.front();
q.pop();
for (int i = 0;i < g[cur].size();i++) {
int now = g[cur][i];
if (ck1[now]) continue;
ck1[now] = 1;
q.push(now);
}
}
} int bfs(int st, int ed) {
queue<int> q;
q.push(st);
step[st] = 0;
ck2[st] = 0;
while (!q.empty()) {
int cur = q.front();
q.pop();
if (cur == ed) return step[ed];
for (int i = 0;i < g[cur].size();i++) {
int now = g[cur][i];
if (!ck2[now]) continue;
ck2[now] = 0;
step[now] = step[cur] + 1;
q.push(now);
}
}
return -1;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= m;i++) {
int u, v;
cin >> u >> v;
if (u == v) continue;
g[v].push_back(u);
}
int st, ed;
cin >> st >> ed; bfsck(ed);///找到终点可达点
memcpy(ck2, ck1, sizeof(ck1));///复制出来 for (int u = 1;u <= n;u++) {///进一步筛选所有正向邻接点是终点可达点的终点可达点
///因为通路反向了,不能通过找到终点可达点找到判断其正向邻接点是否是终点不可达点
///而要通过终点不可达点排除其反向邻接点,因为终点不可达点的反向邻接点的正向邻接点是终点不可达点
if (ck1[u]) continue;
for (int j = 0;j < g[u].size();j++)
ck2[g[u][j]] = 0;
}
cout << bfs(ed, st) << '\n';///找到终点到起点的最短路径
return 0;
}

NC16498 [NOIP2014]寻找道路的更多相关文章

  1. 【DFS】【图论】NOIP2014寻找道路

    [NOIP2014]寻找道路 题目描述 Description 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所 ...

  2. NOIP2014 寻找道路

    2.寻找道路 (road.cpp/c/pas) [问题描述] 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所指 ...

  3. 【洛谷P2296】[NOIP2014]寻找道路

    寻找道路 题目链接 这道题非常的水,按照题意, 先反向建边,从终点搜索,标记出可以到达终点的点 然后枚举一遍,判断出符合条件1的点 再从起点搜索一遍就可以了 #include<iostream& ...

  4. [NOIP2014]寻找道路(图论)

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  5. 1807. [NOIP2014]寻找道路P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  6. [洛谷P2296] NOIP2014 寻找道路

    问题描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  7. [NOIP2014]寻找道路 题解

    题目大意: 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足 ...

  8. luogu2296 [NOIp2014]寻找道路 (bfs)

    反着建边,从T bfs找合法的点,然后再正着bfs一下求最短路就行了 #include<bits/stdc++.h> #define pa pair<int,int> #def ...

  9. NOIP2014 day2 t2 寻找道路

    寻找道路 NOIP2014 day2 t2 描述 在有向图 G 中,每条边的长度均为 1,现给定起点和终点,请你在图中找一条从起点到 终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所指向的 ...

  10. 洛谷P2296 寻找道路 [拓扑排序,最短路]

    题目传送门 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

随机推荐

  1. ORA-65140: 无效的通用配置文件名称

    1.问题 CREATE PROFILE PM_Profile LIMIT SESSIONS_PER_USER 100 PASSWORD_LIFE_TIME 90; 在创建概要文件时,报错:ORA-65 ...

  2. bootstrap : 响应式导航

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  3. SpringBoot01:HelloWorld!

    回顾Spring Spring是一个开源框架,2003年兴起的一个轻量级的Java开发框架. Spring是为了解决企业级应用开发的复杂性而创建的,简化开发. Spring是怎样简化Java开发的呢? ...

  4. [转帖]tidb RESTORE

    https://docs.pingcap.com/zh/tidb/v4.0/sql-statement-restore RESTORE 语句用于执行分布式恢复,把 BACKUP 语句生成的备份文件恢复 ...

  5. parquet极简学习

    parquet极简学习 摘要 parquet的概念: Parquet文件是一种列式存储文件格式,广泛应用于大数据处理框架, 如Apache Hadoop和Apache Spark. 它通过将数据组织成 ...

  6. Jmeter学习之八_测试kafka

    Jmeter学习之八_测试kafka 背景 最近在持续学习. 昨天学习了grafana展示Jmeter测试数据库的结果 今天想着能够测试一下kafka验证一下kafka的吞吐量等信息 说干就干的. 遇 ...

  7. [转帖]linux 部署jmeter&报错处理

    一.linux 安装jdk Java Downloads | Oracle 二. linux上传jmeter 2.1 上传jmeter jmeter 下载地址: Apache JMeter - Dow ...

  8. [转帖]人脸特征计算速度优化-SIMD技术Neon介绍

    人脸特征计算速度优化-SIMD技术Neon介绍 JasonZhu 游走于秃头和研究的边缘 ​关注   15 人赞同了该文章 ​ 目录 收起 1. baseline计算 2. simd和数据重排加速 数 ...

  9. alertmanager远程配置

    用于远程配置alertmanager的rules. 主要步骤为: 通过proxy更新mount的告警规则文件 重启容器 # ./client -h Note: Only for update exis ...

  10. vue中render函数使用attrs绑定id、class、style、事件(5)

    1.h函数的三个参数 第一个参数是必须的. 类型:{String | Object | Function} 一个 HTML 标签名.一个组件.一个异步组件.或一个函数式组件. 是要渲染的html标签. ...