Problem Statement

There are $N$ Takahashi.

The $i$-th Takahashi has an integer $A_i$ and $B_i$ balls.

An integer $x$ between $1$ and $K$, inclusive, will be chosen uniformly at random, and they will repeat the following operation $x$ times.

  • For every $i$, the $i$-th Takahashi gives all his balls to the $A_i$-th Takahashi.

Beware that all $N$ Takahashi simultaneously perform this operation.

For each $i=1,2,\ldots,N$, find the expected value, modulo $998244353$, of the number of balls the $i$-th Takahashi has at the end of the operations.

How to find a expected value modulo $998244353$

It can be proved that the sought probability is always a rational number. Additionally, the constraints of this problem guarantee that if the sought probability is represented as an irreducible fraction \(\frac{y}{x}\), then \(x\) is not divisible by \(998244353\).

Here, there is a unique \(0\leq z\lt998244353\) such that \(y\equiv xz\pmod{998244353}\), so report this \(z\).

Constraints

  • $1\leq N\leq 2\times10^5$
  • $1\leq K\leq 10^{18}$
  • $K$ is not a multiple of $998244353$.
  • $1\leq A _ i\leq N\ (1\leq i\leq N)$
  • $0\leq B _ i\lt998244353\ (1\leq i\leq N)$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$ $K$
$A _ 1$ $A _ 2$ $\cdots$ $A _ N$
$B _ 1$ $B _ 2$ $\cdots$ $B _ N$

Output

Print the expected value of the number of balls the $i$-th Takahashi has at the end of the operations for $i=1,2,\ldots,N$, separated by spaces, in a single line.


Sample Input 1

5 2
3 1 4 1 5
1 1 2 3 5

Sample Output 1

3 0 499122179 499122178 5

During two operations, the five Takahashi have the following number of balls.

If $x=1$ is chosen, the five Takahashi have $4,0,1,2,5$ balls.

If $x=2$ is chosen, the five Takahashi have $2,0,4,1,5$ balls.

Thus, the sought expected values are $3,0,\dfrac52,\dfrac32,5$.
Print these values modulo $998244353$, that is, $3,0,499122179,499122178,5$, separated by spaces.


Sample Input 2

3 1000
1 1 1
1 10 100

Sample Output 2

111 0 0

After one or more operations, the first Takahashi gets all balls.


Sample Input 3

16 1000007
16 12 6 12 1 8 14 14 5 7 6 5 9 6 10 9
719092922 77021920 539975779 254719514 967592487 476893866 368936979 465399362 342544824 540338192 42663741 165480608 616996494 16552706 590788849 221462860

Sample Output 3

817852305 0 0 0 711863206 253280203 896552049 935714838 409506220 592088114 0 413190742 0 363914270 0 14254803

Sample Input 4

24 100000000007
19 10 19 15 1 20 13 15 8 23 22 16 19 22 2 20 12 19 17 20 16 8 23 6
944071276 364842194 5376942 671161415 477159272 339665353 176192797 2729865 676292280 249875565 259803120 103398285 466932147 775082441 720192643 535473742 263795756 898670859 476980306 12045411 620291602 593937486 761132791 746546443

Sample Output 4

918566373 436241503 0 0 0 455245534 0 356196743 0 906000633 0 268983266 21918337 0 733763572 173816039 754920403 0 273067118 205350062 0 566217111 80141532 0

期望是假的,其实题目是让 \(x\) 走 \(i(i\le k)\) 步后的点加上 \(a_i\)

容易发现是一棵基环树,环上树上分开考虑。

树上的点长剖计算就好,复杂度 \(O(n)\),关键是环上的点。

对每个树上的点,考虑他给环上的点带来的贡献,破环成链,差分计算即可。注意按照距离的不同,走的时候他有可能没走到。

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5,P=998244353;
typedef long long LL;
int n,q[N],l=1,r,a[N],b[N],e_num,hd[N],ans[N],inv,c[N<<1],in[N],s[N],dp[N],dfn[N],tme,son[N];
struct edge{
int v,nxt;
}e[N];
LL k;
int read()
{
char ch=getchar();
int s=0;
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
s=s*10+ch-48,ch=getchar();
return s;
}
int pown(int x,int y)
{
if(!y)
return 1;
int t=pown(x,y>>1);
if(y&1)
return 1LL*t*t%P*x%P;
return 1LL*t*t%P;
}
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
void doit(int x,int op)
{
if(son[x])
doit(son[x],1),ans[x]=(ans[son[x]]+b[son[x]])%P;
for(int i=hd[x];i;i=e[i].nxt)
{
if(e[i].v==son[x])
continue;
doit(e[i].v,1);
(ans[x]+=(ans[e[i].v]+b[e[i].v])%P)%=P;
for(int j=0;j<dp[e[i].v];j++)
(s[dfn[x]+j+1]+=s[dfn[e[i].v]+j])%=P;
}
if(k+1<dp[x])
(ans[x]+=P-s[dfn[x]+k+1])%=P;
if(!op)
ans[x]=0;
}
void init(int x,int fa)
{
s[dfn[x]=++tme]=b[x];
if(son[x])
init(son[x],x);
for(int i=hd[x];i;i=e[i].nxt)
if(e[i].v^son[x])
init(e[i].v,x);
}
void dfs(int x,int dep,int fr)
{
for(int i=hd[x];i;i=e[i].nxt)
dfs(e[i].v,dep+1,fr);
for(int i=hd[x];i;i=e[i].nxt)
if(dp[e[i].v]>dp[son[x]])
son[x]=e[i].v;
dp[x]=dp[son[x]]+1;
if(dep<=k)
{
LL p=(k-dep)%r,q=(k-dep)/r%P;
(c[fr]+=1LL*(q+1)*b[x]%P)%=P;
(c[fr+p+1]+=(P-b[x])%P)%=P;
(c[fr+r]+=(P-1LL*q*b[x]%P)%P)%=P;
}
}
void solve(int x)
{
q[r=1]=x;
int p=a[x];
while(p^x)
{
q[++r]=p;
p=a[p];
}
for(int i=1;i<=r;i++)
{
dfs(q[i],in[q[i]]=0,i);
init(q[i],0);
doit(q[i],0);
}
for(int i=1;i<=2*r;i++)
(c[i]+=c[i-1])%=P,(ans[q[(i-1)%r+1]]+=c[i])%=P;
for(int i=1;i<=r;i++)
(ans[q[i]]+=(P-b[q[i]])%P)%=P;
for(int i=1;i<=2*r;i++)
c[i]=0;
}
int main()
{
scanf("%d%lld",&n,&k),inv=pown(k%P,P-2);
for(int i=1;i<=n;i++)
a[i]=read(),in[a[i]]++;
for(int i=1;i<=n;i++)
b[i]=read();
for(int i=1;i<=n;i++)
if(!in[i])
q[++r]=i;
while(l<=r)
{
in[a[q[l]]]--;
add_edge(a[q[l]],q[l]);
if(!in[a[q[l]]])
q[++r]=a[q[l]];
l++;
}
for(int i=1;i<=n;i++)
if(in[i])
solve(i);
for(int i=1;i<=n;i++)
printf("%lld ",1LL*ans[i]*inv%P);
}

[ABC310G] Takahashi And Pass-The-Ball Game的更多相关文章

  1. [转] 如何应用设计模式设计你的足球引擎(三和四)----Design Football Game(Part III and IV)

    原文地址:http://www.codeproject.com/KB/cpp/applyingpatterns2.aspx 作者:An 'OOP' Madhusudanan 译者:赖勇浩(http:/ ...

  2. CodeChef CHEFSOC2 Chef and Big Soccer 水dp

    Chef and Big Soccer   Problem code: CHEFSOC2 Tweet     ALL SUBMISSIONS All submissions for this prob ...

  3. Python的并发并行[1] -> 线程[3] -> 多线程的同步控制

    多线程的控制方式 目录 唤醒单个线程等待 唤醒多个线程等待 条件函数等待 事件触发标志 函数延迟启动 设置线程障碍 1 唤醒单个线程等待 Condition类相当于一把高级的锁,可以进行一些复杂的线程 ...

  4. 【256】◀▶IEW-答案

    附答案 Unit I Fast food Model Answers: Model 1 The pie chart shows the fast foods that teenagers prefer ...

  5. codechef May Challenge 2016 CHSC: Che and ig Soccer dfs处理

    Description All submissions for this problem are available. Read problems statements in Mandarin Chi ...

  6. 【242】◀▶IEW-Unit07

    Unit 7 Education: Schools I.句子基本结构在写作中的运用 主谓宾 主系表 主谓 主谓宾宾 主谓宾补 1.主语: 1)位于句首 2)名词 例句:应该建立相关法律 Laws an ...

  7. 2019 GDUT Rating Contest II : Problem B. Hoofball

    题面: 传送门 B. Hoofball Input file: standard input Output file: standard output Time limit: 5 second Memor ...

  8. [模拟电路] 2、Passive Band Pass Filter

    note: Some articles are very good in http://www.electronics-tutorials.ws/,I share them in the Cnblog ...

  9. Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-Origin' heade

    XMLHttpRequest cannot load http://10.164.153.37:8050/WebService/WebService.asmx/wsGetStreetData. Res ...

  10. UvaLA 3938 "Ray, Pass me the dishes!"

                            "Ray, Pass me the dishes!" Time Limit: 3000MS   Memory Limit: Unkn ...

随机推荐

  1. 《Linux基础》03. 运行级别 · 实用指令

    @ 目录 1:运行级别 2:帮助指令 2.1:man 2.2:help 3:文件目录指令 3.1:pwd 3.2:ls 3.3:cd 3.4:mkdir 3.5:rmdir 3.6:touch 3.7 ...

  2. 当开源项目 Issue 遇到了 DevChat

    目录 1. 概述 2. Bug 分析与复现 3. Bug 定位与修复 4. 代码测试 5. 文档更新 6. 提交 Commit 7. 总结 1. 概述 没错,又有人给 GoPool 项目提 issue ...

  3. 在 Net7.0环境下测试了 Assembly.Load、Assmebly.LoadFile和Assembly.LoadFrom的区别

    一.简介 很长时间没有关注一些C#技术细节了,主要在研究微服务.容器.云原生.编批等高大上的主题了,最近在写一些框架的时候,遇到了一些和在 Net Framework 框架下不一样的情况,当然了,我今 ...

  4. Machine Learning for NetFlow Anomaly Detection With Human-Readable Annotations 笔记

    Machine Learning for NetFlow Anomaly Detection With Human-Readable Annotations 关键摘要 我们开发了一个复杂企业网络中的异 ...

  5. 自己把源码生成jar,在android项目中调用

    项目源码下载地址 看了很多,找了很多,都是没有自己想要的效果的,不容易啊,备注下吧. 1.自己的源码 ,java文件,里边有各种方法,生成jar,可以分享给别人使用. 2.目前主要验证在android ...

  6. 使用Github Action实现构建、发布到 nuget.org

    使用Github Action实现构建.发布到 nuget.org GitHub Actions是GitHub提供的持续集成和持续部署(CI/CD)工具,它能够自动化构建.测试和部署你的项目.在这篇教 ...

  7. zend framework 数据库操作(DB操作)总结

    (1)数据查询总结 fetchRow()这个方法返回一行,具体返回是相关数组还是什么用setFetchMode()决定fetchCol()返回第一列fetchOne()返回第一行,第一列.为一个值不是 ...

  8. [数据分析与可视化] 基于Python绘制简单动图

    动画是一种高效的可视化工具,能够提升用户的吸引力和视觉体验,有助于以富有意义的方式呈现数据可视化.本文的主要介绍在Python中两种简单制作动图的方法.其中一种方法是使用matplotlib的Anim ...

  9. 21.2 Python 使用Scapy实现端口探测

    Scapy 是一款使用纯Python编写的跨平台网络数据包操控工具,它能够处理和嗅探各种网络数据包.能够很容易的创建,发送,捕获,分析和操作网络数据包,包括TCP,UDP,ICMP等协议,此外它还提供 ...

  10. Mysql面试大全

    说说MySQL索引的底层数据结构 MySQL索引的底层数据结构是B+树数据结构 详细介绍一下B+树的数据结构是什么样子的 B+树有三个特性 B+树是一个平衡多叉树,与平衡二叉树的每一个节点下面最多有两 ...