四、用go语言,我们往往希望双向链表的所有元素在存储器中保持紧凑,例如,在多数组表示中占用前m 个下标位置。(在页式虚拟存储的计算环境下,即为这种情况。)假设除指向链表本身的指针外没有其他指针指向该链表的元素,试说明如何实现过程ALLOCATE-OBIECT和 FREE-OBJECT,使得该表示保持紧凑。(提示:使用栈的数组实现。)

文心一言:

在Go语言中,我们可以使用一种称为"栈的数组"的结构来实现这种紧凑的存储。在这种表示中,数组的元素按照它们被分配的顺序存储,并且分配和释放操作都通过栈来进行,这样可以保证所有元素在存储器中保持紧凑。

首先,我们需要定义链表节点的数据结构,通常包含数据本身和指向下一个节点的指针。此外,为了便于实现,我们还需要一个栈来跟踪可用节点。

type Node struct {
data int
next *Node
} type Stack struct {
top *Node
len int
}

然后我们可以实现ALLOCATE-OBJECT和FREE-OBJECT过程。在ALLOCATE-OBJECT过程中,我们首先检查栈是否为空,如果为空,我们创建一个新的节点并将其推入栈中。否则,我们从栈顶弹出一个节点并将其数据设置为所需的值。在FREE-OBJECT过程中,我们将节点推入栈中以使其可供以后重新使用。

func ALLOCATE-OBJECT(x int) *Node {
if stack.len == 0 {
stack.top = &Node{data: x, next: nil}
stack.len = 1
return stack.top
} else {
node := stack.top
stack.top = node.next
node.data = x
node.next = nil
stack.len++
return node
}
} func FREE-OBJECT(node *Node) {
node.next = stack.top
stack.top = node
stack.len--
}

这种实现方式可以保证链表元素的存储是紧凑的,因为所有节点都存储在连续的内存位置。此外,由于我们使用栈来实现分配和释放过程,所以这些操作都是O(1)时间复杂度。

讯飞星火:

要实现双向链表的紧凑表示,我们可以使用栈的数组来实现。首先,我们需要定义一个结构体来表示双向链表的节点,包含前驱、后继和数据。然后,我们需要实现两个函数:ALLOCATE-OBJECT 和 FREE-OBJECT。

  1. ALLOCATE-OBJECT:这个函数用于分配一个新的节点,并将其添加到链表中。为了保持紧凑表示,我们需要确保新节点的前驱和后继指针指向正确的位置。具体来说,新节点的前驱指针应该指向当前链表的最后一个节点,后继指针应该指向nullptr。同时,我们需要更新链表的尾部指针。

  2. FREE-OBJECT:这个函数用于释放一个节点,并从链表中移除它。为了保持紧凑表示,我们需要确保被释放节点的前驱和后继指针仍然指向正确的位置。具体来说,如果被释放节点是链表的第一个节点,那么我们需要将链表的头部指针更新为nullptr;否则,我们需要更新被释放节点的前驱节点的后继指针。最后,我们需要更新链表的尾部指针。

以下是用Go语言实现的代码:

package main

import "fmt"

type Node struct {
prev *Node
next *Node
data int
} var head *Node
var tail *Node func AllocateObject(data int) *Node {
newNode := &Node{
prev: nil,
next: nil,
data: data,
} if head == nil {
head = newNode
tail = newNode
} else {
newNode.prev = tail
tail.next = newNode
tail = newNode
} return newNode
} func FreeObject(node *Node) {
if node == head {
head = node.next
} if node == tail {
tail = node.prev
} if node.prev != nil {
node.prev.next = node.next
} if node.next != nil {
node.next.prev = node.prev
}
} func main() {
node1 := AllocateObject(1)
node2 := AllocateObject(2)
node3 := AllocateObject(3) fmt.Println("Before freeing:")
printList() FreeObject(node2) fmt.Println("After freeing:")
printList()
} func printList() {
temp := head
for temp != nil {
fmt.Printf("%d -> ", temp.data)
temp = temp.next
}
fmt.Println("nil")
}

在这个例子中,我们首先创建了一个双向链表,然后释放了第二个节点。在释放节点之前和之后,我们都打印了链表的内容,以验证双向链表的紧凑表示是否得到了保持。

360智脑:

这个问题涉及到内存分配和释放,以及栈的数组实现。在Go语言中,可以使用mallocfree函数进行内存的分配和释放。但是,使用mallocfree可能会导致内存碎片,影响程序的性能。因此,可以考虑使用栈的数组来实现内存的分配和释放。

首先,需要定义一个Object类型来表示双向链表的元素。然后,可以创建一个栈来存储链表的元素。每当新的元素被添加到链表中时,将其压入栈中。当需要删除链表中的某个元素时,将其从栈中弹出。在遍历链表时,可以使用栈的出栈操作来访问链表中的元素。

下面是一个简单的示例代码:

package main

import "fmt"

type Object struct {
val int
} func AllocateObject() *Object {
// 分配内存空间
} func FreeObject(obj *Object) {
// 释放内存空间
} func AddObject(head *Object, val int) {
// 将新元素压入栈中
stack := &Object{}
*stack = *head
(*stack).val = val
(*stack).next = head
head = *stack
} func DelObject(head *Object, val int) {
// 将元素从栈中弹出并替换链表中对应的元素
stack := &Object{}
*stack = *head
if *stack.val == val {
(*stack).val = (*stack).next.val
(*stack).next = (*stack).next.next
head = *stack
} else {
for *stack.val != val {
stack = stack.next
}
}
} func ShowObject(head *Object) {
// 遍历链表并输出元素值
for head != nil {
fmt.Println(head.val)
head = head.next
}
} func main() {
head := &Object{val: 0}
AddObject(head, 1)
AddObject(head, 2)
AddObject(head, 3)
AddObject(head, 4)
AddObject(head, 5)
DelObject(head, 2)
ShowObject(head)
}

在这个示例中,AllocateObject函数用于分配内存空间,FreeObject函数用于释放内存空间,AddObject函数用于将新元素压入栈中,DelObject函数用于将元素从栈中弹出并替换链表中对应的元素,ShowObject函数用于遍历链表并输出元素值。这些函数的具体实现取决于具体的应用场景和要求。

智谱清言:

在 Go 语言中,我们可以使用栈数组来实现紧凑存储的双向链表。首先,我们需要定义一个结构体来表示链表的节点,包含指向前后节点的指针以及需要存储的对象本身。接着,我们实现 ALLOCATE-OBJECT 和 FREE-OBJECT 过程,分别用于创建和释放链表节点。

以下是一种可能的实现方式:

package main
import "fmt"
type Node struct {
Data interface{}
Next *Node
Prev *Node
FreeNext *Node
}
func AllocateObject(stack []*Node, size int) *Node {
if len(stack) < size+1 {
stack = append(stack, nil)
}
node := stack[size]
node.Next = stack[size-1]
node.Prev = nil
node.FreeNext = nil
if node.Next != nil {
node.Next.Prev = node
}
return node
}
func FreeObject(stack []*Node, node *Node) {
if node.Prev != nil {
node.Prev.Next = node.Next
} else {
stack = stack[:len(stack)-1]
}
if node.Next != nil {
node.Next.Prev = nil
}
}
func main() {
stack := make([]*Node, 0, 10)
node1 := AllocateObject(stack, 10)
node2 := AllocateObject(stack, 20)
node3 := AllocateObject(stack, 30)
fmt.Println("链表节点:", node1, node2, node3)
FreeObject(stack, node2)
fmt.Println("链表节点:", node1, node3)
}

在这个例子中,我们使用栈数组来存储链表的节点。当需要创建新的节点时,我们使用 AllocateObject 函数,将新节点插入到栈顶。当需要释放节点时,我们使用 FreeObject 函数,将节点从栈中移除。这样,链表的元素在存储器中保持紧凑。

通义千问:

在这个问题中,我们可以使用栈的数组来实现双向链表的分配和释放。首先,我们需要定义一个双向链表节点的数据结构:

type Node struct {
Next *Node
Prev *Node
Data int
}

然后,我们可以定义一个栈的数组来存储双向链表的节点:

var stack [N]Node

其中,N是我们希望存储的节点的最大数量。

在ALLOCATE-OBJECT函数中,我们需要分配一个新的节点。首先,我们需要检查栈是否已满。如果已满,我们就返回一个错误。否则,我们就从栈顶弹出一个节点,然后将其数据字段设置为新的值,最后返回这个节点。

func ALLOCATE-OBJECT(value int) *Node {
if len(stack) == N {
return nil
}
top := &stack[len(stack)-1]
top.Data = value
return top
}

在FREE-OBJECT函数中,我们需要释放一个节点。首先,我们需要找到这个节点,然后将其从栈中删除。如果这个节点没有前驱节点,我们就将栈顶节点的前驱指针设置为nil。如果这个节点没有后继节点,我们就将栈顶节点的后继指针设置为nil。

func FREE-OBJECT(node *Node) {
if node.Prev != nil {
node.Prev.Next = nil
} else {
stack[len(stack)-1].Next = nil
}
if node.Next != nil {
node.Next.Prev = nil
} else {
stack[len(stack)-1].Prev = nil
}
stack[len(stack)-1] = *node
}

这样,我们就可以通过栈的数组实现双向链表的分配和释放,并保持链表的所有元素在存储器中保持紧凑。

天工:

在实现双向链表时,我们可以使用一个栈的数组来实现元素的存储和管理。栈的数组可以通过下标来访问元素,因此可以很好地保持元素在存储器中的紧凑表示。

具体来说,我们可以将每个元素表示为一个包含以下字段的结构体:

  • value:元素的值

  • prev:指向前一个元素的指针

  • next:指向后一个元素的指针

我们可以使用一个大小为n的栈的数组来存储这些元素,其中n是链表的长度。栈的数组的下标范围为[1, n],因为下标0用于表示链表的头部。

在实现ALLOCATE-OBJECT过程时,我们可以按照以下步骤进行:

1.检查栈的数组是否已满。如果已满,则返回一个错误。

2.分配一个新元素的空间,并将其初始化为一个新的双向链表节点。

3.将新节点的prev和next指针设置为相应的NULL值。

4.将新节点的值设置为输入参数value。

5.将新节点的下标设置为栈的数组的最后一个下标+1。

6.将新节点的prev指针设置为栈的数组中最后一个元素的next指针。

7.将新节点的next指针设置为NULL。

8.将栈的数组中最后一个元素的next指针设置为新节点。

9.返回新节点的下标。

在实现FREE-OBJECT过程时,我们可以按照以下步骤进行:

1.检查输入参数是否为NULL。如果是,则返回一个错误。

2.检查输入参数的下标是否在栈的数组的范围内。如果不是,则返回一个错误。

3.获取输入参数的前一个节点的指针prev和后一个节点的指针next。

4.将输入参数的prev指针设置为NULL,将输入参数的next指针设置为NULL。

5.将栈的数组中输入参数的下标处的元素的prev指针设置为输入参数的next指针。

6.将栈的数组中输入参数的下标处的元素的next指针设置为输入参数的prev指针。

7.返回输入参数的下标。

通过这种方式,我们可以在保持元素紧凑表示的同时,实现双向链表的所有操作。

chatgpt:

要实现双向链表的紧凑存储,可以使用栈的数组实现。下面是ALLOCATE-OBJECT和FREE-OBJECT的示例实现:

type ListNode struct {
prev, next int // 存储前驱和后继节点在数组中的索引位置
// 其他数据字段
} type CompactLinkedList struct {
stack []int // 空闲节点的索引栈
nodes []ListNode // 双向链表节点数组
head, tail int // 头尾指针,记录链表头尾节点在数组中的索引位置
} func NewCompactLinkedList(capacity int) *CompactLinkedList {
ll := &CompactLinkedList{
stack: make([]int, 0),
nodes: make([]ListNode, capacity),
head: -1,
tail: -1,
} for i := capacity - 1; i >= 0; i-- {
ll.stack = append(ll.stack, i)
} return ll
} func (ll *CompactLinkedList) ALLOCATE_OBJECT() (*ListNode, bool) {
if len(ll.stack) == 0 {
return nil, false // 栈空,无法分配新节点
} index := ll.stack[len(ll.stack)-1] // 弹出栈顶元素作为新节点索引 if ll.head == -1 && ll.tail == -1 { // 链表为空时,更新头尾指针
ll.head = index
ll.tail = index
} else { // 链表非空时,更新原尾节点和新节点之间的链接关系
ll.nodes[ll.tail].next = index
ll.nodes[index].prev = ll.tail
ll.tail = index
} ll.stack = ll.stack[:len(ll.stack)-1] // 弹出栈顶元素 return &ll.nodes[index], true
} func (ll *CompactLinkedList) FREE_OBJECT(node *ListNode) bool {
if node == nil {
return false // 节点为空,无法释放
} index := node.prev // 获取节点在数组中的索引位置 if node.prev == -1 && node.next == -1 { // 节点为链表唯一节点时,更新头尾指针
ll.head = -1
ll.tail = -1
} else if node.prev == -1 { // 节点为头节点时,更新头指针和原下一个节点的前驱指针为-1
nextIndex := node.next
ll.head = nextIndex
ll.nodes[nextIndex].prev = -1
} else if node.next == -1 { // 节点为尾节点时,更新尾指针和原前驱节点的后继指针为-1
prevIndex := node.prev
ll.tail = prevIndex
ll.nodes[prevIndex].next = -1
} else { // 节点位于链表中间时,更新原前驱节点和后继节点之间的链接关系
prevIndex := node.prev
nextIndex := node.next ll.nodes[prevIndex].next=nextIndex;
ll.nodes[nextIndex].prev=prevIndex; } ll.stack = append(ll.stack, index) // 将释放的节点索引入栈 return true
}

以上是一个基于栈的数组实现的紧凑双向链表。通过ALLOCATE_OBJECT方法可以分配新节点,FREE_OBJECT方法可以释放节点。该实现将所有元素存储在紧凑的连续内存中,并使用栈来管理空闲节点。

文心一言 VS 讯飞星火 VS chatgpt (119)-- 算法导论10.3 4题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. Python 一大坑,配置文件中字典引用问题(拷贝)。

    大坑 +1 python 配置文件中字典引用问题 最近在开发系统时发现一个传奇的BUG, 用户未登录就可进入系统内,而且含有真实身份信息. 此问题困扰多时,反复debug.由于找不到问题原因,复现具有 ...

  2. Java扩展Nginx之三:基础配置项

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 经历了前面两篇的入门和编译源码之后,从本篇起 ...

  3. 《架构整洁之道》学习笔记 Part 2 编程范式

    计算机编程发展至今,一共只有三个编程范式: 结构化编程 面向对象编程 函数式编程 编程范式和软件架构的关系 结构化编程是各个模块的算法实现基础 多态(面向对象编程)是跨越架构边界的手段 函数式编程是规 ...

  4. 基于GPT搭建私有知识库聊天机器人(六)仿chatGPT打字机效果

    文章链接: 基于GPT搭建私有知识库聊天机器人(一)实现原理 基于GPT搭建私有知识库聊天机器人(二)环境安装 基于GPT搭建私有知识库聊天机器人(三)向量数据训练 基于GPT搭建私有知识库聊天机器人 ...

  5. Ubuntu Ctrl + Alt + [F1~F6] 图形化终端与命令行终端

    在20.04的版本中,F1和F2是两个图形化终端,可以登陆不同的用户.(如果是相同的用户登陆,则进入的是同一个终端.) F4-F6都是命令行终端,即便使用相同的用户登陆,也是打开不同的终端. 说明,命 ...

  6. python: 获取整个字段转换成列表,并将列表转换成字典

    获取整个字段转换成列表,并将列表转换成字典

  7. 【译】为你的 ASP. NET Core Web API 创建 Microsoft Power App

    通过轻松创建 Web API 前端来提升您的开发体验. 低代码工具在开发人员中越来越流行,因为用更少的代码更快地创建应用程序.在 Visual Studio 2022 17.6 预览版2中,您现在可以 ...

  8. 数据处理的那些事「GitHub 热点速览」

    撇开一屏占四分之三屏幕的 AI 相关项目之外,本周剩下的热榜项目就是同数据有关的数据库项目,比如 CockroachDB 团队开源的 kv 存储数据库 pebble,旨在提供高性能的消息队列 blaz ...

  9. TCP如何实现可靠传输、流量控制、拥塞控制

    上一篇文章中讲述了TCP首部的存储的数据,这一篇来聊聊这些数据帮助TCP实现一些特性. 可靠传输 TCP传输会保障数据的可靠和完整,如果数据传输过程丢失了,会重新传输. 保障的第一种协议方式是 停止等 ...

  10. react中常见hook的使用方式与区别

    1.什么是hook?react hook是react 16.8推出的方法,能够让函数式组件像类式组件一样拥有state.ref.生命周期等属性. 2.为什么要出现hook?函数式组件是全局当中一个普通 ...