A New Defense Against Adversarial Images: Turning a Weakness into a Strength
@article{hu2019a,
title={A New Defense Against Adversarial Images: Turning a Weakness into a Strength},
author={Hu, Shengyuan and Yu, Tao and Guo, Chuan and Chao, Weilun and Weinberger, Kilian Q},
pages={1633--1644},
year={2019}}
代码.
概
本文介绍了一种检测是否为adversarial sample的defense.
主要内容
准则1
一般的CNN网络, 抗干扰(随机噪声)的能力是很强的, 这说明, 数据分布应当是如下图一样, \(x\)(其类别为\(A\)) 的周围的点大部分类别仍为\(A\), 落入\(B,C,D\)需要一些更强的干扰(如gradient-based adversaries).

这启发了作者, 采样\(\epsilon \sim \mathcal{N}(0, \sigma^2I)\), 比较
\]
其中\(h(\cdot)\)为网络, 其输出为概率向量, 显然\(\Delta\)越大, 说明\(x\)对随机噪声的抗干扰能力不强, 说明\(x\)越有可能是adversarial sample.
准则2
同样如上图, 可以发现, 普通的样本往往落在分类边界周围, 所以利用adversaries 可以很容易(表现为迭代次数少)就能将其转移到另外的类别区域中去, 相反的, adversarial samples往往落在分类区域内部, 所以如果我们将adversarial samples移动到别的区域是不容易的(表现为需要更多的迭代次数).
所以, 假设将\(x\)移动到别的区域内的最少迭代次数为\(K\), \(K\)越大越有可能是adversarial samples. 由于攻击分为untarget, target所以, 所以作者也将准则2细分为C2(t/u)
总策略
有了\((\Delta,K_t,K_u)\), 当其中任何一个大于(分别)\((t_{C1}, t_{C2t},t_{C2u})\)时, 我们就认为\(x\)是一个adversarial sample, 其中\((t_{C1}, t_{C2t},t_{C2u})\)是认为设置的阈值.
注: 这俩个直觉还是挺有趣的, 只是感觉很难实用, 毕竟这些指标不仅是依赖于网络本身, 对干净数据也是一个挑战.
A New Defense Against Adversarial Images: Turning a Weakness into a Strength的更多相关文章
- Limitations of the Lipschitz constant as a defense against adversarial examples
目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...
- (转)Awesome Knowledge Distillation
Awesome Knowledge Distillation 2018-07-19 10:38:40 Reference:https://github.com/dkozlov/awesome-kno ...
- (转)Is attacking machine learning easier than defending it?
转自:http://www.cleverhans.io/security/privacy/ml/2017/02/15/why-attacking-machine-learning-is-easier- ...
- Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
目录 概 主要内容 Mustafa A., Khan S., Hayat M., Goecke R., Shen J., Shao L., Adversarial Defense by Restric ...
- DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...
- Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
目录 概 主要内容 Obfuscated Gradients BPDA 特例 一般情形 EOT Reparameterization 具体的案例 Thermometer encoding Input ...
- Automysqlbackup: WARNING: Turning off multicore support, since pigz isn’t there.
在使用Automysqlbackup备份MySQL时,有时候你会在邮件里面看见"WARNING: Turning off multicore support, since pigz isn' ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
随机推荐
- Learning Spark中文版--第三章--RDD编程(2)
Common Transformations and Actions 本章中,我们浏览了Spark中大多数常见的transformation(转换)和action(开工).在包含特定数据类型的RD ...
- 初学js正则表达式之密码强度验证
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Linux基础命令---htdigest建立和更新apache服务器摘要
htdigest htdigest指令用来建立和更新apache服务器用于摘要认证的存放用户认证信息的文件. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS. 1.语法 ...
- Initialization of data members
In C++, class variables are initialized in the same order as they appear in the class declaration. C ...
- Druid数据库监控
一.简介 Druid是阿里开源的一个JDBC应用组件, 其包括三部分: DruidDriver: 代理Driver,能够提供基于Filter-Chain模式的插件体系. DruidDataSource ...
- Spring Boot事务支持
一.创建项目 二.添加依赖 <dependencies> <dependency> <groupId>org.projectlombok</groupId&g ...
- 一行配置搞定 Spring Boot项目的 log4j2 核弹漏洞!
相信昨天,很多小伙伴都因为Log4j2的史诗级漏洞忙翻了吧? 看到群里还有小伙伴说公司里还特别建了800+人的群在处理... 好在很快就有了缓解措施和解决方案.同时,log4j2官方也是速度影响发布了 ...
- 果蝇优化算法_Fruit Fly Optimization
1. 果蝇优化算法背景 在夏天,果蝇是一种随处可见的昆虫.果蝇在嗅觉和视觉特别突出.腐烂的食物发出一种刺鼻的味道,温度越高这种气味的扩散速度较快,果蝇对这种味道非常敏感.腐烂的味道和食物的位置有关.一 ...
- [BUUCTF]PWN3——warmup_csaw_2016
[BUUCTF]PWN3--warmup_csaw_2016 题目网址:https://buuoj.cn/challenges#warmup_csaw_2016 步骤: 例行检查,64位,没有开启任何 ...
- 使用 Amazon S3 触发器创建缩略图
使用 Amazon S3 触发器创建缩略图 环境 centos (注意,必须是Linux环境) node12.x 安装教程 curl -sL https://rpm.nodesource.com/se ...