POJ 1986:Distance Queries
Distance Queries
Time Limit: 2000MS | Memory Limit: 30000K | |
Total Submissions: 18139 | Accepted: 6248 | |
Case Time Limit: 1000MS |
Description
Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!
Input
* Lines 1..1+M: Same format as "Navigation Nightmare"
* Line 2+M: A single integer, K. 1 <= K <= 10,000
* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
Output
* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance.
Sample Input
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6
Sample Output
13
3
36
Hint
Farms 2 and 6 are 20+3+13=36 apart.
题意
n个点,m条边,每两个相连的点有一个距离,对于每次询问,求出u,v的距离
思路
因为题中给出的图是一个树(Navigation Nightmare题目链接:http://poj.org/problem?id=1984)
对于树上的两点距离,我们有:dis(u,v)=dis(u,root)+dis(v,toot)-2*dis(lca(u,v),root)
预处理出来每个点到根节点的距离,在查询的时候求出u,v两点的lca,然后利用上述公式计算即可
因为是一棵树,所以可以以任意一个节点作为根节点
代码
1 #include <algorithm>
2 #include <iostream>
3 #include <string.h>
4 #define ll long long
5 #define ull unsigned long long
6 #define ms(a,b) memset(a,b,sizeof(a))
7 const int inf=0x3f3f3f3f;
8 const ll INF=0x3f3f3f3f3f3f3f3f;
9 const int maxn=2e5+10;
10 const int mod=1e9+7;
11 const int maxm=1e3+10;
12 using namespace std;
13 int f[maxn];
14 int find(int x)
15 {
16 if(f[x]!=x)
17 f[x]=find(f[x]);
18 return f[x];
19 }
20 inline void join(int x,int y)
21 {
22 int dx=f[x],dy=f[y];
23 if(dx!=dy)
24 f[dy]=dx;
25 }
26 struct Edge
27 {
28 int to,Next;
29 int value;
30 }edge[maxn];
31 int tot1;
32 int head1[maxn];
33 inline void add_edge(int u,int v,int w)
34 {
35 edge[tot1].to=v;
36 edge[tot1].value=w;
37 edge[tot1].Next=head1[u];
38 head1[u]=tot1++;
39 }
40 int vist[maxn];
41 int dis[maxn];
42 // 预处理每个点到根节点的距离
43 void dfs(int u,int len)
44 {
45 dis[u]=len;
46 vist[u]=1;
47 for(int i=head1[u];~i;i=edge[i].Next)
48 {
49 int v=edge[i].to;
50 if(!vist[v])
51 dfs(v,len+edge[i].value);
52 }
53 }
54 struct Query
55 {
56 int to,nex;
57 int index;
58 }query[maxn];
59 int head2[maxn];
60 int tot2;
61 inline void add_query(int u,int v,int index)
62 {
63 query[tot2].to=v;
64 query[tot2].index=index;
65 query[tot2].nex=head2[u];
66 head2[u]=tot2++;
67 query[tot2].to=u;
68 query[tot2].index=index;
69 query[tot2].nex=head2[v];
70 head2[v]=tot2++;
71 }
72 int vis[maxn];
73 int fa[maxn];
74 int ans[maxn];
75 void LCA(int u)
76 {
77 fa[u]=u;
78 vis[u]=1;
79 for(int i=head1[u];~i;i=edge[i].Next)
80 {
81 int v=edge[i].to;
82 if(vis[v])
83 continue;
84 LCA(v);
85 join(u,v);
86 fa[find(u)]=u;
87 }
88 for(int i=head2[u];~i;i=query[i].nex)
89 {
90 int v=query[i].to;
91 if(vis[v])
92 ans[query[i].index]=fa[find(v)];
93 }
94 }
95 inline void init(int n)
96 {
97 tot1=tot2=0;
98 ms(head1,-1);
99 ms(head2,-1);
100 ms(vis,0);
101 ms(vist,0);
102 ms(fa,0);
103 ms(dis,0);
104 for(int i=1;i<=n;i++)
105 f[i]=i;
106 }
107 int x[maxn],y[maxn];
108 int main(int argc, char const *argv[])
109 {
110 #ifndef ONLINE_JUDGE
111 freopen("/home/wzy/in.txt", "r", stdin);
112 freopen("/home/wzy/out.txt", "w", stdout);
113 srand((unsigned int)time(NULL));
114 #endif
115 ios::sync_with_stdio(false);
116 cin.tie(0);
117 int n,m,q;
118 while(cin>>n>>m)
119 {
120 init(n);
121 int u,v,w;
122 char ch[3];
123 for(int i=0;i<m;i++)
124 cin>>u>>v>>w>>ch,add_edge(u,v,w),add_edge(v,u,w);
125 dfs(1,0);
126 cin>>q;
127 for(int i=0;i<q;i++)
128 cin>>x[i]>>y[i],add_query(x[i],y[i],i);
129 LCA(1);
130 for(int i=0;i<q;i++)
131 cout<<dis[x[i]]+dis[y[i]]-2*dis[ans[i]]<<endl;
132 }
133 #ifndef ONLINE_JUDGE
134 cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
135 #endif
136 return 0;
137 }
POJ 1986:Distance Queries的更多相关文章
- POJ 1986:Distance Queries(倍增求LCA)
http://poj.org/problem?id=1986 题意:给出一棵n个点m条边的树,还有q个询问,求树上两点的距离. 思路:这次学了一下倍增算法求LCA.模板. dp[i][j]代表第i个点 ...
- poj-1986 Distance Queries(lca+ST+dfs)
题目链接: Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 11531 Accepted ...
- POJ 1986 Distance Queries(Tarjan离线法求LCA)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12846 Accepted: 4552 ...
- poj 1986 Distance Queries LCA
题目链接:http://poj.org/problem?id=1986 Farmer John's cows refused to run in his marathon since he chose ...
- POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]
题目链接:http://poj.org/problem?id=1986 Description Farmer John's cows refused to run in his marathon si ...
- POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】
任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total ...
- POJ 1986 Distance Queries LCA两点距离树
标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
随机推荐
- Hadoop运行jar包报错java.lang.Exception: java.lang.ArrayIndexOutOfBoundsException: 1
错误信息: java.lang.Exception: java.lang.ArrayIndexOutOfBoundsException: 1 at org.apache.hadoop.mapre ...
- Shell 打印空行的行号
目录 Shell 打印空行的行号 题解 Shell 打印空行的行号 写一个 bash脚本以输出一个文本文件 nowcoder.txt中空行的行号,可能连续,从1开始 示例: 假设 nowcoder.t ...
- Linux学习 - 压缩解压命令
一." .gz "压缩文件 1 压缩语法 gzip [文件] 2 解压语法 gunzip [压缩文件] 3 注 gzip只能压缩文件 gzip不保留原文件 二." . ...
- B树和B+树原理图文解析
B树与B+树不同的地方在于插入是从底向上进行(当然查找与二叉树相同,都是从上往下) 二者都通常用于数据库和操作系统的文件系统中,非关系型数据库索引如mongoDB用的B树,大部分关系型数据库索引使用的 ...
- 磁盘管理LVM
目录 一.简介 二.操作 环境简介 操作 一.简介 LVM全称为Logical Volume Management,它是Linux环境下对磁盘分区进行管理的一种机制,它可以将多个硬盘合成一个资源池,然 ...
- CentOS6设置开机自启动
1.把开机启动脚本(mysqld)copy到文件夹/etc/init.d 或 /etc/rc.d/init.d 中 2.将启动程序的命令添加到 /etc/rc.d/rc.local 文件中,比如: # ...
- CTF靶场
CTF靶场测试报告 一.跨站脚本攻击(XSS) 实验原理:跨站脚本攻击( Cross Site Script),本来的缩写应为CSS,但是为了与层叠样式表(Cascading Style CSS)区分 ...
- Linux编译安装、压缩打包、定时任务管理
编译安装 压缩打包 定时任务管理 一.编译安装 使用源代码,编译打包软件 1.特点 1.可以定制软件 2.按需构建软件 2.编译安装 1.下载源代码包 wget https://nginx.org/d ...
- cmcc_simplerop
这是一道系统调用+rop的题. 先来就检查一下保护. 32位程序,只开启了堆栈不可执行.ida看一下伪代码. 代码也很简洁,就是直接让你溢出.这里ida反汇编显示的v4具体ebp的距离是0x14,再加 ...
- 删除空行(嵌套)(Power Query 之 M 语言)
数据源: "姓名""基数""个人比例""个人缴纳""公司比例""公司缴纳"&qu ...