[hdu7026]Might and Magic
(以下默认$A_{0},D_{0},P_{0},K_{0}$都为非负整数)
显然存活轮数$S=\lceil\frac{H_{0}}{C_{p}\max(A_{1}-D_{0},1)}\rceil$是一个关键的变量,且根据数论分块其仅有$o(\sqrt{H_{0}})$种取值,不妨利用数论分块直接$o(\sqrt{H_{0}})$枚举,进而也可以确定$D_{0}$(取对应的最小值即可)
(上取整的数论分块实际上即将$H_{0}-1$即可)
进一步的,有以下结论:存在一种取到最值的方案,满足$A_{0}=0$或$A_{0}=N'$
关于证明,考虑再枚举这$S$轮中物理攻击和魔法攻击的轮数,即$S_{p}$和$S_{m}$(其中$S_{p}+S_{m}=S$)
接下来,考虑如何分配物理攻击和魔法攻击的点数,令$F_{p}(x)$和$F_{m}(x)$分别为给物理攻击和魔法攻击分配$x$点的最大伤害值,显然有
$$
\begin{cases}F_{p}(x)=C_{p}S_{p}\max(x-D_{1},1)\\F_{m}(x)=C_{m}\begin{cases}\lfloor\frac{x}{2}\rfloor(x-\lfloor\frac{x}{2}\rfloor)&(\lfloor\frac{x}{2}\rfloor\le S_{m})\\S_{m}(x-S_{m})&(\lfloor\frac{x}{2}\rfloor>S_{m})\end{cases}\end{cases}
$$
最终答案即求$F(x)=F_{p}(x)+F_{m}(N'-x)$在$x\in [0,N']$的最大值,不难证明$F_{p}$和$F_{m}$都是下凸的,进而将$F_{m}$翻转后和$F_{p}$求和仍是下凸的,也即$F$是下凸的
同时,下凸函数的最大值显然在端点处取到,即$x=0$或$x=N'$,显然$x$也即$A_{0}$,结论得证
通过这个结论,对两类分别讨论:
1.若$A_{0}=0$,考虑再枚举$K_{0}$,答案即
$$
\begin{cases}C_{p}(S-K_{0})+C_{m}K_{0}(N'-K_{0})&(K_{0}<S)\\C_{m}S(N'-K_{0})&( K_{0}\ge S)\end{cases}
$$
(为了保证魔法攻击不劣于物理攻击,可以令$K_{0}<N'$,但实际上也会在下面的情况中考虑)
即是一个关于$K_{0}$的分段一次和二次函数, 不难求极值
2.若$A_{0}=N'$,显然全部使用物理攻击,答案即$C_{p}S\max(A_{0}-D_{1},1)$
由于有$t$组数据,最终总复杂度为$o(t\sqrt{H_{0}})$,可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t,Cp,Cm,H0,A1,D1,n;
5 ll ans;
6 ll f(ll a,ll b,ll c,int x){
7 return a*x*x+b*x+c;
8 }
9 ll get_max(ll a,ll b,ll c,int l,int r){
10 ll pos=-b/(a<<1),ans=max(f(a,b,c,l),f(a,b,c,r));
11 if ((l<=pos)&&(pos<=r))ans=max(ans,f(a,b,c,pos));
12 if ((l<=pos+1)&&(pos+1<=r))ans=max(ans,f(a,b,c,pos+1));
13 return ans;
14 }
15 int main(){
16 scanf("%d",&t);
17 while (t--){
18 scanf("%d%d%d%d%d%d",&Cp,&Cm,&H0,&A1,&D1,&n);
19 ans=0;
20 for(int i=1,j;i<=A1;i=j+1){
21 if (i>=H0)j=A1;
22 else j=min((H0-1)/((H0-1)/i),A1);
23 int S=((H0+i-1)/i+Cp-1)/Cp,D0=A1-j,nn=n-D0;
24 if (nn<0)continue;
25 if (min(nn,S)>1)ans=max(ans,get_max(-Cm,(ll)Cm*nn-Cp,(ll)Cp*S,1,min(nn,S)-1));
26 if (S<nn)ans=max(ans,(ll)Cm*S*(nn-S));
27 ans=max(ans,(ll)Cp*S*max(nn-D1,1));
28 }
29 printf("%lld\n",ans);
30 }
31 return 0;
32 }
[hdu7026]Might and Magic的更多相关文章
- Codeforces CF#628 Education 8 D. Magic Numbers
D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- [8.3] Magic Index
A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...
- Python魔术方法-Magic Method
介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...
- 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律
F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree
Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...
- 一个快速double转int的方法(利用magic number)
代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...
- MAGIC XPA最新版本Magic xpa 2.4c Release Notes
New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...
- Magic xpa 2.5发布 Magic xpa 2.5 Release Notes
Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...
- How Spring Boot Autoconfiguration Magic Works--转
原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...
随机推荐
- Firewalls文件配置防火墙
1.源文件 /usr/lib/firewalld/services 2.文件配置 cat /etc/firewalld/zones/public.xml <?xml version=" ...
- 鲲鹏展翅|SphereEx 获华为鲲鹏技术认证
SphereEx Data Middleware 通过了华为鲲鹏技术认证并加入鲲鹏展翅伙伴计划,未来 SphereEx Data Middleware 产品将继续以分布式能力为基础,以数据安全.分布式 ...
- Shell 编程 基础用法
Shell 编程 更改shell脚本权限 chmod u+x shell.sh 标准头部写法 #! /bin/bash #! /bin/dash 变量使用 a=10 print $a 读取命令行参数 ...
- Redis大集群扩容性能优化实践
一.背景 在现网环境,一些使用Redis集群的业务随着业务量的上涨,往往需要进行节点扩容操作. 之前有了解到运维同学对一些节点数比较大的Redis集群进行扩容操作后,业务侧反映集群性能下降,具体表现在 ...
- Bug概述、状态、类型、级别、优先级提交和Bug生命周期管理
缺陷概述: 1)缺陷(Defect):是指存在于软件之中偏差,可被激活,以静态形式存在于软件内部,相当于Bug. 2)故障(Fault):当缺陷被激活后,软件运⾏中出现的状态,可引起意外情况,若不加处 ...
- eureka服务端和客户端的简单搭建
本篇博客简单记录一下,eureka 服务端和 客户端的简单搭建. 目标: 1.完成单机 eureka server 和 eureka client 的搭建. 2.完成eureka server 的添加 ...
- [ NOIP2013 D2-T3 ] 华容道
NOIP2013 华容道 图论好题. 介于网上全是些令蒟蒻头昏的题解和排版一塌糊涂以及过于详细的题解...蒟蒻记录一下.. 显然需要将白格移动到 \(s\) 相邻格,然后交换 \(s\) 与白格,再将 ...
- QMake(Qt项目构建)
qmake工具能够简化不同平台上的项目构建.可以自动产生Makefiles文件,仅仅需要少量的信息就可以生成Makefile文件.同时qmake也可以构建不是Qt的项目.qmake基于项目文件中的信息 ...
- sql server 如何跟更新拼接的数据(cast用法)
我们在实际中会做如下图的连接 执行以后这个连接就会报错了,如下图所示 然后我们用cast将数字转换为字符串在连接,如下图所示 这次连接的结果就没问题了,如下图所示 最后如果两个数字 ...
- 二,zabbix与php的一些问题
zabbix 检查先决条件 一.php-bcmath 不支持 php 安装 bcmath 扩展(编译安装) PHP的linux版本需要手动安装BCMath扩展,在PHP的源码包中默认包含BCMath的 ...