(以下默认$A_{0},D_{0},P_{0},K_{0}$都为非负整数)

显然存活轮数$S=\lceil\frac{H_{0}}{C_{p}\max(A_{1}-D_{0},1)}\rceil$​​​是一个关键的变量,且根据数论分块其仅有$o(\sqrt{H_{0}})$​​​种取值,不妨利用数论分块直接$o(\sqrt{H_{0}})$​​枚举,进而也可以确定$D_{0}$​​​​​​(取对应的最小值即可)

(上取整的数论分块实际上即将$H_{0}-1$即可)

进一步的,有以下结论:存在一种取到最值的方案,满足$A_{0}=0$​​或$A_{0}=N'$​​​

关于证明,考虑再枚举这$S$​​轮中物理攻击和魔法攻击的轮数,即$S_{p}$​​和$S_{m}$​​(其中$S_{p}+S_{m}=S$​​)

接下来,考虑如何分配物理攻击和魔法攻击的点数,令$F_{p}(x)$​和$F_{m}(x)$​分别为给物理攻击和魔法攻击分配$x$​​​点的最大伤害值,显然有
$$
\begin{cases}F_{p}(x)=C_{p}S_{p}\max(x-D_{1},1)\\F_{m}(x)=C_{m}\begin{cases}\lfloor\frac{x}{2}\rfloor(x-\lfloor\frac{x}{2}\rfloor)&(\lfloor\frac{x}{2}\rfloor\le S_{m})\\S_{m}(x-S_{m})&(\lfloor\frac{x}{2}\rfloor>S_{m})\end{cases}\end{cases}
$$
最终答案即求$F(x)=F_{p}(x)+F_{m}(N'-x)$在$x\in [0,N']$的最大值,不难证明$F_{p}$和$F_{m}$都是下凸的,进而将$F_{m}$翻转后和$F_{p}$求和仍是下凸的,也即$F$是下凸的

同时,下凸函数的最大值显然在端点处取到,即$x=0$​​或$x=N'$​​,显然$x$也即$A_{0}$​,结论得证

通过这个结论,对两类分别讨论:

1.若$A_{0}=0$​,考虑再枚举$K_{0}$​,答案即​​
$$
\begin{cases}C_{p}(S-K_{0})+C_{m}K_{0}(N'-K_{0})&(K_{0}<S)\\C_{m}S(N'-K_{0})&( K_{0}\ge S)\end{cases}
$$
(为了保证魔法攻击不劣于物理攻击,可以令$K_{0}<N'$,但实际上也会在下面的情况中考虑)​​

即是一个关于$K_{0}$​​的分段一次和二次函数, 不难求极值

2.若$A_{0}=N'$​​​,显然全部使用物理攻击,答案即$C_{p}S\max(A_{0}-D_{1},1)$​​

由于有$t$组数据,最终总复杂度为$o(t\sqrt{H_{0}})$​,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t,Cp,Cm,H0,A1,D1,n;
5 ll ans;
6 ll f(ll a,ll b,ll c,int x){
7 return a*x*x+b*x+c;
8 }
9 ll get_max(ll a,ll b,ll c,int l,int r){
10 ll pos=-b/(a<<1),ans=max(f(a,b,c,l),f(a,b,c,r));
11 if ((l<=pos)&&(pos<=r))ans=max(ans,f(a,b,c,pos));
12 if ((l<=pos+1)&&(pos+1<=r))ans=max(ans,f(a,b,c,pos+1));
13 return ans;
14 }
15 int main(){
16 scanf("%d",&t);
17 while (t--){
18 scanf("%d%d%d%d%d%d",&Cp,&Cm,&H0,&A1,&D1,&n);
19 ans=0;
20 for(int i=1,j;i<=A1;i=j+1){
21 if (i>=H0)j=A1;
22 else j=min((H0-1)/((H0-1)/i),A1);
23 int S=((H0+i-1)/i+Cp-1)/Cp,D0=A1-j,nn=n-D0;
24 if (nn<0)continue;
25 if (min(nn,S)>1)ans=max(ans,get_max(-Cm,(ll)Cm*nn-Cp,(ll)Cp*S,1,min(nn,S)-1));
26 if (S<nn)ans=max(ans,(ll)Cm*S*(nn-S));
27 ans=max(ans,(ll)Cp*S*max(nn-D1,1));
28 }
29 printf("%lld\n",ans);
30 }
31 return 0;
32 }

[hdu7026]Might and Magic的更多相关文章

  1. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. [8.3] Magic Index

    A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...

  3. Python魔术方法-Magic Method

    介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...

  4. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  5. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  6. 一个快速double转int的方法(利用magic number)

    代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...

  7. MAGIC XPA最新版本Magic xpa 2.4c Release Notes

    New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...

  8. Magic xpa 2.5发布 Magic xpa 2.5 Release Notes

    Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...

  9. How Spring Boot Autoconfiguration Magic Works--转

    原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...

随机推荐

  1. Linux基础安全配置(centos7)

    1.帐户口令的生存期不长于90天 sed -i.old 's#99999#90#g' /etc/login.defs egrep "90" /etc/login.defs 2.密码 ...

  2. 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)

    qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...

  3. 北鲲云超算如何让仿真技术、HPC和人工智能之间的深度融合?

    在CAE领域,随着仿真技术在多个行业的深度应用,也带来了仿真模型日益复杂.仿真过程数据倍增.仿真计算费用昂贵等问题,降阶模型.人工智能.云计算等多种技术和仿真技术的深度融合,成为了仿真技术的重要发展趋 ...

  4. SpringBoot-thymeleaf-静态资源引入和接管

    引入前端 templates下放html页面 static下放css.js.image等静态资源 添加thymeleaf命名空间 <html lang="en" xmlns: ...

  5. STM32直流电机启动(一)驱动电路的介绍

    驱动电路 典型的H桥驱动电路如下:要使电机旋转只需导通对角线上的两个三极管即可,如导通Q1,Q4,关闭Q2,Q4即可驱动电机正转:若想电机反向转动,即导通三极管Q2,Q3,关闭Q1,Q4.此时电路图可 ...

  6. 如何优雅的处理 accept 出现 EMFILE 的问题

    通常情况下,服务端调用 accept 函数会返回一个新的文件描述符,用于和客户端之间的数据传输 在服务器的开发中,有时会遇到这种情况:当调用 accept 函数接受客户端连接,函数返回失败,对应的错误 ...

  7. UVM RAL模型和内置seq

    转载:UVM RAL模型:用法和应用_寄存器 (sohu.com) 在系统设计中通常会面临两大挑战:缩小技术节点的规模和上市时间(TTM,Time to Market).为了适应激烈的市场竞争,大多数 ...

  8. palindrome-partitioning-ii leetcode C++

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  9. 重学STM32---(九)之CAN通信(一)

    目录 1.CAN 是什么 2.CAN 特点 3.错误状态的种类 4.总线拓扑 5.CAN 协议 1.CAN 是什么   CAN 是 Controller Area Network的缩写(以下称为 CA ...

  10. 前端面试手写代码——call、apply、bind

    1 call.apply.bind 用法及对比 1.1 Function.prototype 三者都是Function原型上的方法,所有函数都能调用它们 Function.prototype.call ...