感知机与SVM一样都是使用超平面对空间线性可分的向量进行分类,不同的是:感知机的目标是尽可能将所有样本分类正确,这种策略指导下得出的超平面可能有无数个,然而SVM不仅需要将样本分类正确,还需要最大化最小分类间隔,对SVM不熟悉的朋友可以移步我另一篇文章:支持向量机(SVM)之硬阈值 - ZhiboZhao - 博客园 (cnblogs.com)

为了系统地分析二者的区别,本文还是首先介绍感知机模型,学习策略以及求解思路

一、感知机模型

还是假定在 \(p\) 维空间有 \(m\) 组训练样本对,构成训练集 $T = { (x_{1}, y_{1}), (x_{2}, y_{2}),...,(x_{n}, y_{n})} $,其中 \(x_{i} \in R^{1 \times p}\),\(y_{i}\in \{-1, +1\}\),以二维空间为例,在线性可分的情况下,所有样本在空间可以描述为:

在上图中,紫色和蓝色的圆形代表不同的类别,红色的实线表示任意一条能够将这两种区分的超平面,理论上这种超平面有无数条,都有可能是感知机的解,然而SVM的模型解出来的超平面很有可能通过最大化最小间隔的策略得到的黑色的实线。我们将超平面表示为:\(\Phi: b+w_{1}x_{1}+w_{2}x_{2}+...+w_{p}x_{p} = 0\),写成矩阵形式为:\(\Phi: w^{T}x + b = 0\),根据高中数学的知识,可以得出 $ w $ 表示超平面的法向量,\(b\) 表示超平面的截距。感知机的最终目标可以表示为:

\[w^{T}x_{i}+b>0,\quad if \quad y_{i}=1\\
w^{T}x_{i}+b<0,\quad if \quad y_{i}=-1
\]

通过有监督的训练,不断地学习超平面的参数 \((w, b)\),最终找到一个超平面 \(f(x) = w^{T}x + b\) 网络能够根据任意输入 \(x_{i}\) 输出对应的值来区分不同的模型。

二、感知机的学习策略

感知机是根据错误驱动的思想来进行学习,具体来说,先给待学习参数 \((w,b)\) 一个初始值,得到的初始超平面一般无法正确区分类别,我们用集合 \(D\) 来代表被错误分类的样本,那么最终的学习策略就是最小化被错误分类的点的个数,定量表示如下:

\[L(w,b) = \sum_{i=1}^{n}\psi (y_{i}(w^{T}x_{i}+b)
\]

函数 \(\psi(x)\) 定义为:

\[\psi(x) = 1, \quad if\quad x<0\\
\psi(x) = 0, \quad if\quad x>0
\]

因为当 \(y_{i}f(x_{i}) = y_{i}(w^{T}x_{i}+b) <0\) 时,该点被错误分类,于是损失函数 \(L(w,b)\) 就记录了总共被错误分类的个数,最小化loss就能求出超平面参数。

然而随着 \((w,b)\) 的改变,指示函数 \(\psi\) 要么为0,要么为1,是一个不连续的函数,因此损失函数不可导,也就不容易求出极值,需要将 \(L(w,b)\) 转换成 \((w,b)\) 的连续函数。

根据高中知识,我们得到空间内任意一点到超平面的距离为:

\[distance = \dfrac{1}{||w||}|w^{T}x_{i}+b|
\]

那么对于正确分类的正样本点,其到超平面的距离设为正数,对于正确分类的错样本点,其道超平面的距离设为复数,那么所有正确分类的样本到超平面的距离可以表示为:

\[d = y_{i}\dfrac{1}{||w||}(w^{T}x_{i}+b)
\]

因此,所有错误分类的样本的到超平面的总距离就可以表示为:

\[d = -y_{i}\dfrac{1}{||w||}(w^{T}x_{i}+b) \Longleftrightarrow -y_{i}(w^{T}x_{i}+b)
\]

所以,感知机的损失函数最终定义为:

\[L(w,b) = -\sum_{i\in D}y_{i}(w^{T}x_{i}+b)
\]

显然:

当正类样本被分成负类样本时 \(w^{T}x_{i}+b < 0,y_{i}>0\),

当负类样本被分成正类样本时 \(w^{T}x_{i}+b > 0,y_{i}<0\),

因此,损失函数是非负的,且分类错误的点就越少,分类错误的点就离超平面越近,其值越小。

三、感知机的求解算法

由于损失函数 \(L(w,b)\) 是自变量的连续函数,因此可以用随机梯度下降 (SGD) 的方式进行求解。那么损失函数的梯度如下:

\[\nabla_{w}L(w,b) = \dfrac{\partial L(w,b)}{\partial w} = -\sum_{x_{i} \in D}y_{i}x_{i}\\
\nabla_{b}L(w,b) = \dfrac{\partial L(w,b)}{\partial b} = -\sum_{x_{i} \in D}y_{i}
\]

采用随机梯度下降法更新的公式为:

\[w = w+\eta y_{i}x_{i};\quad b = b+\eta y_{i}
\]

感知机与支持向量机 (SVM)的更多相关文章

  1. 【Supervised Learning】支持向量机SVM (to explain Support Vector Machines (SVM) like I am a 5 year old )

    Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SV ...

  2. [转] 从零推导支持向量机 (SVM)

    原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要 ...

  3. 【python与机器学习实战】感知机和支持向量机学习笔记(一)

    对<Python与机器学习实战>一书阅读的记录,对于一些难以理解的地方查阅了资料辅以理解并补充和记录,重新梳理一下感知机和SVM的算法原理,加深记忆. 1.感知机 感知机的基本概念 感知机 ...

  4. 机器学习——支持向量机SVM

    前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型, ...

  5. 【IUML】支持向量机SVM

    从1995年Vapnik等人提出一种机器学习的新方法支持向量机(SVM)之后,支持向量机成为继人工神经网络之后又一研究热点,国内外研究都很多.支持向量机方法是建立在统计学习理论的VC维理论和结构风险最 ...

  6. 机器学习:Python中如何使用支持向量机(SVM)算法

    (简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异 ...

  7. 以图像分割为例浅谈支持向量机(SVM)

    1. 什么是支持向量机?   在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...

  8. 机器学习算法 - 支持向量机SVM

    在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案 ...

  9. 机器学习之支持向量机—SVM原理代码实现

    支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...

随机推荐

  1. ZwQuerySystemInformation枚举内核模块

    在内核中通过调用此函数来枚举windows系统中已经加载的内核模块. NTSTATUS ZwQuerySystemInformation ( SYSTEM_INFORMATION_CLASS Syst ...

  2. linux下将一个大的文件拆分成若干小文件

    命令:split,例子: 以行数拆分 -l参数: split –l 50 原始文件 拆分后文件名前缀 说明:以50行对文件进行拆分,最后一个文件的行数没有50行以实际行数进行分配,比如有一个名为 wl ...

  3. .Net Core导入千万级数据至Mysql

    ​最近在工作中,涉及到一个数据迁移功能,从一个txt文本文件导入到MySQL功能. 数据迁移,在互联网企业可以说经常碰到,而且涉及到千万级.亿级的数据量是很常见的.大数据量迁移,这里面就涉及到一个问题 ...

  4. calico NetworkPolicy on kubernetes

    什么是网络策略 在Kubernetes平台中,要实现零信任网络的安全架构,Calico与istio是在Kubernetes集群中构建零信任网络必不可少的组件. 而建立和维护整个集群中的"零信 ...

  5. [bug] SpringBoot 集成 jsp,访问时页面报Whitelabel Error Page

    参考 https://bbs.csdn.net/topics/392187702

  6. Linux_交换分区SWAP

    一.交换分区SWAP 1️⃣:交换分区SWAP就是LINUX下的虚拟内存分区,它的作用是在物理内存使用完之后,将磁盘空间(也就是SWAP分区)虚拟成内存来使用. 2️⃣:交换分区一般指定虚拟内存的大小 ...

  7. 【转载】基于RedHatEnterpriseLinux V7(RHEL7)下SPEC CPU 2006环境搭建以及测试流程(之一)——介绍、安装准备、安装、config文件以及运行脚本介绍

    基于RedHatEnterpriseLinux V7(RHEL7)下SPEC CPU 2006环境搭建以及测试流程(之一)--介绍.安装准备.安装.config文件以及运行脚本介绍 其他 2018-0 ...

  8. 1.5 RPM红帽软件包1.6 Yum软件仓库

    1.5 RPM红帽软件包 在RPM(红帽软件包管理器)公布之前,要想在Linux系统中安装软件只能采取源码包的方式安装.早期在Linux系统中安装程序是一件非常困难.耗费耐心的事情,而且大多数的服务程 ...

  9. Android屏幕适配全攻略(最权威的官方适配指导)屏幕尺寸 屏幕分辨率 屏幕像素密度 dpdipdpisppx mdpihdpixdpixxdpi

    Android屏幕适配全攻略(最权威的官方适配指导)原创赵凯强 发布于2015-05-19 11:34:17 阅读数 153734 收藏展开 转载请注明出处:http://blog.csdn.net/ ...

  10. 021.Python的内置函数

    内置函数 1 abs 绝对值函数 res = abs(-9.9867) print(res) 执行 [root@node10 python]# python3 test.py 9.9867 2 rou ...