Solution Set -「LOCAL」冲刺省选 Round XXV
\(\mathscr{Summary}\)
读错题了读错题了 B 题差点没做出来真的太吓人了。
逆序开题,C 题直接冲一发暴力最大权闭合子图居然过了。A 题确实一下子没想到用“可能的函数集合”描述状态,所以直接摆烂。B 题感觉是个没见过的 trick 啊,但现推还是比较容易,本来把“跳到一个后代”理解成“跳到一个儿子”,冲出树剖调半天发现读错题,我直接 。还好树剖那一大坨都是对的,只是初始的 SG 得重算(怎么还变简单了啊喂)。总之就是这里浪费了很多时间。
想出正解的题一定缩减代码和调试时间,不要太悠闲 qwq。
\(\mathscr{Solution}\)
\(\mathscr{A}-\) 开心消消乐
给定任意 \(\varphi:\{0,1\}^3\rightarrow\{0,1\}\) 以及一个字符集为 01? 的串 \(S\)。每次操作为:取出一个 \(S[:2k+1]\),将 \(S\) 的这个前缀替换为字符 \(\varphi(\dots,\varphi(S_{2k-1},S_{2k},S_{2k+1}))\)。求有多少个将 ? 替换为 0 或 1 的方案,使得存在一种操作方案能将得到的 \(S\) 变为单个字符 1。
\(n\le10^5\),多测组数 \(T\le10\)。
你先想想怎么判合法。 ——邓老师
考虑检查一个字符集为 01 的 \(S\) 是否合法。DP 的基本想法必然是以前缀为子问题,而当一个前缀处理完成后,我们只需要关心它留下的东西对后方操作的影响。形式地,令 \(g(i,\phi)\) 表示考虑了前 \(i~(2\mid i)\) 个字符,剩下的前缀对下一个字符的影响是映射 \(\phi\) 的情况是否存在。转移不难。
会判合法,直接 DP of DP 解决问题:令 \(f(i,\Phi)\) 表示考虑了前 \(i~(2\mid i)\) 个字符,剩下的前缀对下一个字符的影响是映射集合 \(\Phi\) 内任意一种的方案数。在求 \(f\) 之前预处理关于 \(\Phi\) 的转移,可以做到 \(\mathcal O(n)\)(状态数有常数 \(2^{2^2}\),转移常数最坏是 \(2\times2\))。
\(\mathscr{B}-\) 树上的棋局
给定一棵含有 \(n\) 个结点的树,初始时根有 \(r=1\),每个结点上有一枚棋子。Alice 和 Bob 在玩一个博弈,双方轮流取一个棋子,将其跳到它所在结点的子树内任意一点,不能不动。现进行 \(q\) 次操作:
- 给定 \(u,v,x\),在路径 \((u,v)\) 上的每个结点加一枚棋子,然后令 \(r\leftarrow x\),最后回答当前树下博弈游戏的 SG 值;
- 给定 \(u,x\),在 \(u\)(以 \(r\) 为根的)子树内的每个结点加一枚棋子,然后令 \(r\leftarrow x\),最后回答当前树下博弈游戏的 SG 值。
\(n,q\le2\times10^5\)。
只要你不读错题…… 就算你读错了题……
首先观察一下修改的形式,发现根的位置几乎不影响修改的进行。例如钦定 \(r=1\),操作 \(1\) 不受影响;操作 \(2\) 可以由若干个对子树的覆盖异或而成。因此可以把为题描述为:在 \(r=1\) 的背景下做修改,询问 \(r=x\) 时的 SG 值,这样“换根”操作就几乎没有了。
再考虑如何回答询问。令 \(g(u)\) 表示 \(r=1\),\(u\) 的 SG;\(f(u)\) 表示 \(r=u\),\(u\) 的 SG,这俩都能预处理出来。令 \(c_u\) 表示 \(u\) 结点棋子数量奇偶性,可见 \(\bigoplus c_ug(u)\) 就是 \(r=1\) 的答案。对于 \(r=x\),SG 值有变动的仅有路径 \(x\rightarrow 1\) 上的结点:
- 对于 \(x\),它的 SG 由 \(g(x)\) 变为 \(f(x)\);
- 对于其余 \(u\),它有在路径上的孩子 \(v\),它的 SG 变为 \(f(u)\) 的 \(\operatorname{mex}\) 集合里剔除 \(g(v)\)(把 \(v\) 子树砍掉)。
树剖?类似于树上 DDP,我们令 \(h(u)\) 表示砍掉 \(u\) 的重儿子之后,以 \(u\) 为根,\(u\) 的 SG。树剖维护 \(c_u(h(u)\oplus g(u))\) 的值,在 \(\bigoplus c_ug(u)\) 的基础上修正 \(x\rightarrow 1\) 这条链上的答案即可。\(\mathcal O(n\log^2 n)\),常数踩标
\(\mathscr{C}-\) 社会黄油飞
(作亿点简化,但应该对于高水平的你来说问题不大。)给定一个 \(n\) 个点 \(m\) 条边的图,求非空最大权闭合子图(是否大于给定常数)。
\(n\le2\times10^3\),\(m\le6\times10^3\)。
暴力:钦定选一个点,跑 \(n\) 次最大权闭合子图,\(\mathcal O(n\operatorname{Dinic}(n+2,n+m))\),过了。
正解:钦定选一个点,然后退流撤销用于钦定的 \(+\infty\) 边,\(\mathcal O(¿)\),T 了。
反 了 它 ¿
Solution Set -「LOCAL」冲刺省选 Round XXV的更多相关文章
- Solution Set -「LOCAL」冲刺省选 Round XXIV
\(\mathscr{Summary}\) 名副其实的 trash round,希望以后没有了. A 题算好,确实一个比较关键的简化状态的点没想到,所以只拿了暴力(不考虑 \(\mathcal ...
- Solution Set -「LOCAL」冲刺省选 Round XXIII
\(\mathscr{Summary}\) 有一说一,虽然我炸了,但这场锻炼心态的效果真的好.部分分聊胜于无,区分度一题制胜,可谓针对性强的好题. A 题,相对性签到题.这个建图确实巧妙,多见 ...
- Solution Set -「LOCAL」冲刺省选 Round XXII
\(\mathscr{Summary}\) 和出题人很有缘分但是没有珍惜.jpg A 题有一个显然的二维偏序斜率式,以及显然的 CDQ 套李超树 \(\mathcal O(n\log^2n)\ ...
- Solution Set -「LOCAL」冲刺省选 Round XXI
\(\mathscr{Summary}\) 省选几个小时啊,怎么模拟赛只打三个小时啊./kk 时间安排较为合理,没有出现严重的因思考时间过少引起的丢分. A 题比较可惜,二分 + 点分治大 ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
随机推荐
- go.mod file not found in current directory or any parent directory; see 'go help modules'
go的环境设置问题,执行 go env -w GO111MODULE=auto 我的环境:Windows 7, Go 1.17 D:\Apps\GOPATH\src\code.oldboyedu.co ...
- python安装第三方库的步骤
windows下举例:1.下载openpyxl,http://pypi.doubanio.com/simple/openpyxl/2.将下载后的文件解压放到Python文件夹下的Lib文件夹下3.cm ...
- [转]JS正则表达式基础
1. 正则表达式的概念 正则表达式(regular expression)描述了一种字符串匹配的模式.这种模式,我们可以理解成是一种"规则".根据这种规则再去匹配符合条件的结果,而 ...
- windows下过安全狗
最近想着把过waf相关的整理一下,本次主要以安全狗4.0为例进行演示 准备工作 安全狗官网:http://free.safedog.cn/install_desc_website.html环境:Win ...
- docker镜像制作及发布
以centos为例. 主要内容:安装docker,制作镜像,发布镜像. 安装docker 1. 安装docker yum install -y docker 等待一会,安装成功,查看安装列表 2. 启 ...
- 《剑指offer》面试题09. 用两个栈实现队列
问题描述 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,dele ...
- 《剑指offer》面试题44. 数字序列中某一位的数字
问题描述 数字以0123456789101112131415-的格式序列化到一个字符序列中.在这个序列中,第5位(从下标0开始计数)是5,第13位是1,第19位是4,等等. 请写一个函数,求任意第n位 ...
- JS调用堆栈
调用栈 JavaScript 是一门单线程的语言,这意味着它只有一个调用栈,因此,它同一时间只能做一件事.如果我们运行到一个函数,它就会将其放置到栈顶.当从这个函数返回的时候,就会将这个函数从栈顶弹出 ...
- Java集合-LinkedList源码分析
目录 1.数据结构-链表 2.ArrayList结构特性 3.构造方法 4.成员变量 5.常用的成员方法 6.Node节点 7.序列化原理 8.迭代器 9.总结 1.数据结构-链表 链表(Linked ...
- jmeter - 阶梯式性能指标监听
概述 我们在进行阶梯式压力测试的时候,聚合报告生成的结果是一个汇总数据.并不会阶梯式的统计压测性能数据.这样我们就不能去对比不同阶梯压力下的性能数据变化趋势. 期望 假设现在一共会加载100个线程,我 ...