\(\mathcal{Description}\)

  Link.(完全一致)

  给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\right)\land\left(\sum_{i=1}^kb_i=m\right)\) 的正整数序列对 \(\{a_k\},\{b_k\}\),其权值为 \(\prod_{i=1}^k\min\{a_i,b_i\}\)。求所有序列对的权值之和,对 \(998244353\) 取模。

  \(n,m,k\le10^6\)。

\(\mathcal{Solution}\)

  我们尝试寻找 \([x^ay^b]G(x,y)=\min\{a,b\}~(a,b>0)\) 中的 \(\text{OGF}\) \(G(x,y)\)。由于 \(x^ay^b=(xy)^{\min\{a,b\}}x^{a-\min\{a,b\}}y^{b-\min\{a,b\}}\),相当于要数出 \(x^ay^b\) 里 \(xy\) 的个数。枚举 \(xy\) 的指数,就有:

\[\min\{a,b\}x^ay^b=\sum_{i=0}^{\min\{a,b\}-1}(xy)^ix^{a-i}y^{b-i}
\]

  构造一下,有:

\[G(x,y)=\left(\sum_{i=1}^{+\infty}x^i\right)\left(\sum_{i=1}^{+\infty}y^i\right)\left(\sum_{i=0}^{+\infty}x^iy^i\right)
\]

  答案即为:

\[[x^ny^m]G^k(x,y)
\]

  枚举 \(xy\) 的指数,三项的贡献均可以用隔板法算出来,故单组 \(\mathcal O(n)\) 得解。

\(\mathcal{Code}\)

#include <cstdio>

const int MAXN = 2e6, MOD = 998244353;
int n, m, K, fac[MAXN + 5], ifac[MAXN + 5]; inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} inline void init () {
fac[0] = 1;
for ( int i = 1; i <= MAXN; ++ i ) fac[i] = 1ll * i * fac[i - 1] % MOD;
ifac[MAXN] = qkpow ( fac[MAXN], MOD - 2 );
for ( int i = MAXN - 1; ~i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % MOD;
} inline int comb ( const int n, const int m ) {
return n < m ? 0 : 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
} int main () {
// freopen ( "easy.in", "r", stdin );
// freopen ( "easy.out", "w", stdout );
init (); int T;
for ( scanf ( "%d", &T ); T --; ) {
scanf ( "%d %d %d", &n, &m, &K );
int ans = 0, up = n < m ? n : m;
for ( int i = 0; i <= up; ++ i ) {
ans = ( ans + 1ll * comb ( i + K - 1, K - 1 ) * comb ( n - i - 1, K - 1 ) % MOD
* comb ( m - i - 1, K - 1 ) ) % MOD;
}
printf ( "%d\n", ans );
}
return 0;
}

\(\mathcal{Details}\)

  直接丢构造富有数学的美感。

Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy的更多相关文章

  1. Solution -「LOCAL」「cov. 牛客多校 2020 第三场 I」礼物

    \(\mathcal{Description}\)   给定排列 \(\{a_n\}\),求字典序第 \(K\) 大的合法排列 \(\{b_n\}\).称一个排列 \(\{p_n\}\) 合法,当且仅 ...

  2. 牛客多校对抗第6场 A Singing Contest

    [20分]标题:A.Singing Contest | 时间限制:1秒 | 内存限制:256MJigglypuff is holding a singing contest. There are 2n ...

  3. 牛客多校训练第八场C.CDMA(思维+构造)

    题目传送门 题意: 输入整数m( m∈2k ∣ k=1,2,⋯,10),构造一个由1和-1组成的m×m矩阵,要求对于任意两个不同的行的内积为0. 题解: Code: #include<bits/ ...

  4. 牛客多校训练第八场G.Gemstones(栈模拟)

    题目传送门 题意: 输入一段字符串,字符串中连续的三个相同的字符可以消去,消去后剩下的左右两段字符串拼接,求最多可消去次数. 输入:ATCCCTTG   输出:2 ATCCCTTG(消去CCC)——& ...

  5. 2019牛客多校训练第四场K.number(思维)

    题目传送门 题意: 输入一个只包含数字的字符串,求出是300的倍数的子串的个数(不同位置的0.00.000等都算,并考虑前导零的情况). sample input: 600 1230003210132 ...

  6. 2019牛客多校训练第三场H.Magic Line(思维)

    题目传送门 大致题意: 输入测试用例个数T,输入点的个数n(n为偶数),再分别输入n个不同的点的坐标,要求输出四个整数x1,y1,x2,y2,表示有一条经过点(x1,y1),(x2,y2)的直线将该二 ...

  7. 2019牛客多校训练第三场B.Crazy Binary String(思维+前缀和)

    题目传送门 大致题意: 输入整数n(1<=n<=100000),再输入由n个0或1组成的字符串,求该字符串中满足1和0个数相等的最长子串.子序列. sample input: 801001 ...

  8. 2019暑假牛客多校训练-第八场-C-CDMA(递归、水题)

    观察前3组可以推出递归规律,生成下一个类型时,每行copy自身与自身相反. 题目描述 Gromah and LZR have entered the third level. There is a b ...

  9. 2018年牛客多校寒假 第四场 F (call to your teacher) (图的连通性)

    题目链接 传送门:https://ac.nowcoder.com/acm/contest/76/F 思路: 题目的意思就是判断图的连通性可以用可达性矩阵来求,至于图的存储可以用邻接矩阵来储存,求出来可 ...

随机推荐

  1. ubuntu 18.04 安装mongodb并设为开机自启动

    导入包管理系统使用的公钥 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 9DA31620334BD75D9DCB4 ...

  2. Python常用功能函数系列总结(五)

    本节目录 常用函数一:向量距离和相似度计算 常用函数二:pagerank 常用函数三:TF-IDF 常用函数四:关键词提取 常用函数一:向量距离和相似度计算 KL距离.JS距离.余弦距离 # -*- ...

  3. 学习鸟哥linux私房菜--安装centos5.6(u盘安装,中文乱码)

    题头为"学习鸟哥Linux私房菜"的内容,均为博主在看鸟哥的Linux私房菜第三版的学习经历收获.以下正文: 鸟哥第一部分讲Linux规则与安装,看到第四章正式开始讲实际安装,于是 ...

  4. FilterConfig接口(Servlet)

    Javax.Servet 包中提供了一个 FilterCofig 接口,它与 ServletConfig 接口相似,用于在过滤器初始化期间向其传递信息.FilterConfig 接口由容器实现,容器将 ...

  5. 带你十天轻松搞定 Go 微服务系列(三)

    序言 我们通过一个系列文章跟大家详细展示一个 go-zero 微服务示例,整个系列分十篇文章,目录结构如下: 环境搭建 服务拆分 用户服务(本文) 产品服务 订单服务 支付服务 RPC 服务 Auth ...

  6. MySQL 5.7.19 简易安装、卸载教程

    前言:传统的 exe 文件安装的MySQL,安装后特别难卸载,而且一旦处理不好,就容易出错,想再安装别的版本也不容易.因为这种方式的安装,虽然是不断的下一步,但是卸载的时候需要处理很多,在本文最后,有 ...

  7. springboot实战小项目-简要介绍、vue项目创建

    因为菜,所以要好好学习! 一.项目介绍:这是一个后台管理系统,准备实现的功能: 1.登录.注册.个人信息查看.退出登录 2.根据关键字查询用户.新增用户.根据id或者其他字段排序.编辑用户信息.删除用 ...

  8. JQuery高级部分

    简介 对动画.遍历.事件绑定的介绍. 操作 动画 三种方式显示和隐藏元素 show([speed,[easing],[fn]]) 默认显示和隐藏方式 参数: speed:动画的速度.三个预定义的值(& ...

  9. 【转】MySql根据经纬度获取附近的商家

    创建geo表 create table geo( geo_id INT NOT NULL AUTO_INCREMENT, lng float NOT NULL, lat float NOT NULL, ...

  10. iconv(gb2312<->utf-8)

    转载请注明来源:https://www.cnblogs.com/hookjc/ unix下安装PHP的module,需要重新编译PHP,Windows下安装模板,只需将php.ini里的配置打开相应的 ...