题意:

      有n个小朋友竞选班长,一号想当班长,每个人都必须选择一个人当班长,并且不可以选择自己,并且每个人都有一个权值ai,这个权值就是如果1想让这个人改变主意选择自己当班长就得给他ai个糖果,只有当1的票数是唯一最多的时候,1才能竞选班长,问1竞选班长的最小花费糖果数。

思路

昨天练习赛的最后一个题,今天才AC,这个题目我们可以用贪心的方法,记得当时自己看完也马上感觉是贪心,可以因为选择了错误的贪心方法和策略,导致写了很长,而且越写越蒙,最后写的脑袋短路了,悲剧啊,说下正解,我们可以枚举1号竞选时的票数,对于每一次枚举,如果当前有人的票数比1号的x多,那么就把他减少到x-1(肯定是挑选费用最小的),然后把当前的票数加到1身上,最后如果1号的票数大于当前的枚举票数,枚举失败,如果等于,那么就更新最优值,如果小于,就在剩下的没有选则1的里面挑选几个最小的补上去,这样就行了,说到这,可能有人去会想,1不是也要投一票吗,怎么没考虑,其实根本不用管1这票投给了谁,因为只有出现这样的状态这一票才会有影响x
x-1 x-1 x-1 x-1.....但是这个状态是不存在的,想一下,这个题目每个人最多投一票,如果1的票数为x,那么那个状态的总票数就是 x + (x - 1) * (n - 1) + 1,其实x是大于等于2的(这个地方自己想,很好想),那么就会得到 2 + (2 - 1) * (n - 1)+ 1 = n + 2,而每个人都一票,总票数是n,所以矛盾,所以不存在那种状态,所以不用考虑1的那票投给了谁。

#include<stdio.h>

#include<algorithm>

#include<string.h>

#define N 120

using namespace std;

typedef struct

{

   int to ,next;

}STAR;

typedef struct

{

   int id ,cost;

}NODE;

STAR E[N];

NODE node[N];

int list[N] ,tot;

int  now[N] ,mark[N] ,MARK[N];

int cost[N];

void add(int a ,int b)

{

   E[++tot].to = b;

   E[tot].next = list[a];

   list[a] = tot;

}

bool camp(NODE a ,NODE b)

{

   return a.cost < b.cost;

}

int main ()

{

   int t ,n ,i ,j ,a;

   scanf("%d" ,&t);

   while(t--)

   {

      scanf("%d" ,&n);

      memset(list ,0 ,sizeof(list)) ,tot = 1;

      memset(mark ,0 ,sizeof(mark));

      memset(MARK ,0 ,sizeof(MARK));

      memset(now ,0 ,sizeof(now));

      for(i = 2 ;i <= n ;i ++)

      {

         scanf("%d" ,&a);

         now[a] ++;

         if(a == 1) MARK[i] = 1;

         add(a ,i);

      }

      for(i = 2 ;i <= n ;i ++)

      scanf("%d" ,&cost[i]);

      int star = 1;

      if(star < now[1]) star = now[1];

      int min = 1000000000;

      for(i = star ;i <= n ;i ++)

      {

         for(j = 1 ;j <= n ;j ++)

         mark[j] = MARK[j];

         

         int sum = 0 ,ss = 0;

         for(j = 2 ;j <= n ;j ++)

         {

            if(now[j] < i) continue;

            int id = 0;

            for(int k = list[j] ;k ;k = E[k].next)

            {

               int to = E[k].to;

               if(mark[to]) continue;

               node[++id].cost = cost[to];

               node[id].id = to;

            } 

            sort(node + 1 ,node + id + 1 ,camp);

            

            for(int k = 1 ;k <= now[j] - i + 1 ;k ++)

            {

               sum += node[k].cost ;

                ss ++ ;

                mark[node[k].id] = 1;

            }

         }

         

         if(ss + now[1] == i)

         {

            if(min > sum) min = sum;

         }

         else if(ss + now[1] > i)

         continue;

         int id = 0;

         int tmp[N];

         for(j = 2 ;j <= n ;j ++)

         for(int k = list[j] ;k ;k = E[k].next)

         if(!mark[E[k].to])tmp[++id] = cost[E[k].to];

         sort(tmp + 1 ,tmp + id + 1);

         for(j = 1 ;j <= i - (ss + now[1]) ;j ++)

         sum += tmp[j];

         if(min > sum) min = sum;

      }

      printf("%d\n" ,min);

   }

   return 0;

}

ZOJ3715 竞选班长求最小花费的更多相关文章

  1. Codeforces Round #466 (Div. 2) B. Our Tanya is Crying Out Loud[将n变为1,有两种方式,求最小花费/贪心]

    B. Our Tanya is Crying Out Loud time limit per test 1 second memory limit per test 256 megabytes inp ...

  2. POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

    题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...

  3. POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4721   Accepted: 1593 D ...

  4. hdoj 3072 Intelligence System【求scc&&缩点】【求连通所有scc的最小花费】

    Intelligence System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  5. ccf 201503-5 最小花费 这题交上去只有10分嗨!求大佬的题解啊

    问题描述 C国共有n个城市.有n-1条双向道路,每条道路连接两个城市,任意两个城市之间能互相到达.小R来到C国旅行,他共规划了m条旅行的路线,第i条旅行路线的起点是si,终点是ti.在旅行过程中,小R ...

  6. 第四届CCF软件能力认证(CSP2015) 第五题(最小花费)题解

    [问题描述] C国共有$n$个城市.有$n-1$条双向道路,每条道路连接两个城市,任意两个城市之间能互相到达.小R来到C国旅行,他共规划了$m$条旅行的路线, 第$i$条旅行路线的起点是$s_i$,终 ...

  7. [LeetCode] Minimum Cost to Merge Stones 混合石子的最小花费

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  8. POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解

    扩展欧几里得算法模板 #include <cstdio> #include <cstring> #define ll long long using namespace std ...

  9. POJ-2195 Going Home---KM算法求最小权值匹配(存负边)

    题目链接: https://vjudge.net/problem/POJ-2195 题目大意: 给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致.man每移动一格 ...

随机推荐

  1. AJAX基本操作

    XMLHttpRequest对象: XMLHttpRequest 是 AJAX 的基础.所有现代浏览器均支持 XMLHttpRequest 对象(IE5 和 IE6 使用 ActiveXObject) ...

  2. springboot源码解析-管中窥豹系列之EnableXXX(十)

    一.前言 Springboot源码解析是一件大工程,逐行逐句的去研究代码,会很枯燥,也不容易坚持下去. 我们不追求大而全,而是试着每次去研究一个小知识点,最终聚沙成塔,这就是我们的springboot ...

  3. PHP配置 3. 配置open_basedir

    open_basedir将网站限定在指定的目录,做目录的隔离 先在php.ini中设置open_basedir: # vim /usr/local/php/etc/php.ini //搜索open_b ...

  4. 200-Java语言基础-Java编程入门-006 | Java数组定义及使用(引用数据类型)

    一.数组概述和定义格式说明 为什么要有数组(容器): 为了存储同种数据类型的多个值 数组概念: 数组是存储同一种数据类型多个元素的集合.也可以看成是一个容器. 数组既可以存储基本数据类型,也可以存储引 ...

  5. pytest+jenkins+allure 生成测试报告发送邮件

    前言第一部分:Pycharm for Gitee1. pycharm安装gitee插件2. gitee关联本地Git快速设置- 如果你知道该怎么操作,直接使用下面的地址简易的命令行入门教程:3. Gi ...

  6. 【python+selenium的web自动化】- 针对上传操作的实现方案

    如果想从头学起selenium,可以去看看这个系列的文章哦! https://www.cnblogs.com/miki-peng/category/1942527.html 关于上传操作 ​ 上传有两 ...

  7. 1.mysql读写

    一.数据库读取(mysql) 参数 接受 作用 默认 sql or table_name string 读取的表名,或sql语句 无 con 数据库连接 数据库连接信息 无 index_col Int ...

  8. 颠覆你认知的Python3.9

    我通读了python 3.9发行说明和相关的讨论.根据这些信息,我想写一个全面的指南,以便每个人都能一眼了解这些功能及其详细的工作原理 原文地址,点击这里,观看效果更佳 简而言之 从字典更新/合并到添 ...

  9. error: failed to push some refs to 'XXX'

    遇到上述无法提交的问题:都是这种命令git push -u origin master造成的 查看github上的提示: 解决:把之前的命令中的master修改成main就好了

  10. [倍增][换根DP]luogu P5024 保卫王国

    题面 https://www.luogu.com.cn/problem/P5024 分析 可以对有限制的点对之间的链进行在倍增上的DP数组合并. 需要通过一次正向树形DP和一次换根DP得到g[0][i ...