Content

定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个数的 \(>1\) 的整数。现在,给出 \(n\) 个数对,请找出它们的 \(\text{WCD}\),或者这 \(n\) 个数对没有符合要求的 \(\text{WCD}\)。

数据范围:\(1\leqslant n\leqslant 1.5\times 10^5,2\leqslant a_i,b_i\leqslant 2\times 10^9\)。

Solution

我们先把第一个数对的质因子分解出来,然后再在后面找是否有不能够满足条件的质因子,有的话就删除,否则就保留着。最后看是否还有剩下的质因子即可。

Code

int n, pr[150007];

int main() {
n = Rint;
F(i, 1, n) {
int x = Rint, y = Rint;
if(i == 1) {
F(j, 2, sqrt(x)) if(!(x % j)) {pr[++pr[0]] = j; while(!(x % j)) x /= j;}
if(x != 1) pr[++pr[0]] = x;
F(j, 2, sqrt(y)) if(!(y % j)) {pr[++pr[0]] = j; while(!(y % j)) y /= j;}
if(y != 1) pr[++pr[0]] = y;
} else F(j, 1, pr[0]) if(!pr[j]) continue; else if(x % pr[j] && y % pr[j]) pr[j] = 0;
}
F(i, 1, pr[0]) if(pr[i]) return printf("%d", pr[i]), 0;
printf("-1");
return 0;
}

CF1025B Weakened Common Divisor 题解的更多相关文章

  1. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  2. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  3. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

  4. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  5. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  6. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  7. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  8. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  9. codeforces 1025B Weakened Common Divisor(质因数分解)

    题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...

随机推荐

  1. Hibernate数据校验简介

    我们在业务中经常会遇到参数校验问题,比如前端参数校验.Kafka消息参数校验等,如果业务逻辑比较复杂,各种实体比较多的时候,我们通过代码对这些数据一一校验,会出现大量的重复代码以及和主要业务无关的逻辑 ...

  2. 从头带你撸一个Springboot Starter

    我们知道 SpringBoot 提供了很多的 Starter 用于引用各种封装好的功能: 名称 功能 spring-boot-starter-web 支持 Web 开发,包括 Tomcat 和 spr ...

  3. python-django-ORM模型

    ORM模型: Object Relational Mapping 对象关系映射 配置引擎的时候最好直接复制: DATABASES = { 'default': { 'ENGINE': 'django. ...

  4. R包开发过程记录

    目的 走一遍R包开发过程,并发布到Github上使用. 步骤 1. 创建R包框架 Rsutdio --> File--> New Project--> New Directory - ...

  5. mysql—MySQL数据库中10位或13位时间戳和标准时间相互转换

    1.字符串时间转10位时间戳 select FLOOR(unix_timestamp(create_time)) from page; #create_time为字段名 page为表名 eg:sele ...

  6. rabbit mq的一个实例,异步功能

    简单的使用场景:消息队列的场景有:解耦,异步,削峰. 此例用的场景,异步 有时候会有请求消耗时间过长,不能老让用户等待返回结果,可以用消息队列来做异步实现,之前用过workmain等类似的异步,但不如 ...

  7. vector去重--unique

    具体实现见中间源码 function template <algorithm> std::unique equality (1) template <class ForwardIte ...

  8. pymongdb入门

    Pymongo入门 安装 pip install pymongo 连接 实际就是实例化一个客户端对象,然后客户端对象中指定一个库作为库对象,库对象中的集合对象就是之后常用来执行操作的对象 1 ''' ...

  9. Kafka(一)【概述、入门、架构原理】

    目录 一.Kafka概述 1.1 定义 二.Kafka快速入门 2.1 安装部署 2.2 配置文件解析 2.3Kafka群起脚本 2.4 topic(增删改查) 2.5 生产和消费者命令行操作 三.K ...

  10. 数据库ER图基础概念

    ER图分为实体.属性.关系三个核心部分.实体是长方形体现,而属性则是椭圆形,关系为菱形. ER图的实体(entity)即数据模型中的数据对象,例如人.学生.音乐都可以作为一个数据对象,用长方体来表示, ...