【机器学习与R语言】1-机器学习简介
1.基本概念
- 机器学习:发明算法将数据转化为智能行为
- 数据挖掘 VS 机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务。后者是前者的先期准备
- 过程:数据——>抽象化——>一般化。或者:收集数据——推理数据——归纳数据——发现规律
抽象化: - 训练:用一个特定模型来拟合数据集的过程
- 用方程来拟合观测的数据:观测现象——数据呈现——模型建立。通过不同的格式来把信息概念化
一般化: - 一般化:将抽象化的知识转换成可用于行动的形式
- 采用启发式算法(利用相近原理和其他一些经验法则)来划分概念集合,但不能保证找到对数据建模的最优概念集,有时会导致错误结论
- 算法偏差:算法的结论是系统性的不准确。偏差是任何机器学习任务的抽象化和一般化这两个过程相联系的不可避免的谬误,一般化的最后一步就是在存在偏差的情况下判断模型的成功性。由于数据中的噪声或无法解释的波动导致模型不能完美的一般化
- 过拟合问题的基础:试图用模型拟合噪声(噪声无法解释,解释就会出错)
- 过拟合:一个模型训练时表现好,测试时很差。过度拟合了训练集,即不能很好地一般化
2.选择机器学习算法
- 机器学习步骤:
收集数据——探索和准备数据(80%时间)——训练模型——评价模型性能——改进模型性能 - 没有免费午餐定理:没有一种机器学习方法对所有环境都是最好的
- 输入数据:案例example,特征feature。一般行为案例,列为特征(与基因表达数据相反)
- 算法分类:监督学习算法(用于预测模型),非监督学习(用于描述模型)
- 有监督学习:监督不是人为干预,而是让目标值监督,告诉学习任务。分类变量可用于分类(类可能有多个水平),数值型数据可建立回归模型预测
- 无监督学习:没有一个明确的学习目标(属性无轻重之分),在数据挖掘中更常用。如购物商品之间联系的购物篮分析(捆绑销售)。描述性模型把数据同类型分组称之聚类。
- 常见有监督学习算法:
分类:K近邻,朴素贝叶斯,决策树,分类器
数值预测:线性回归,回归树,模型树
分类和数值预测:神经网络,支持向量机 - 常见无监督学习算法:
模式识别:关联规则
聚类:K均值聚类 - 模型的选择是带有随机性的。当预测准确性是主要考虑因素时,需要测试多个模型,然后选择一个最好的。
3.使用R进行机器学习
- CRAN收录的机器学习R包:https://cran.r-project.org/web/views/MachineLearning.html
- RWeka包:基于Java平台的R使用机器学习算法的函数集合
install.packages("RWeka")
library(RWeka)
- R管理数据
save(x,y,z,file='mydata.RData')
load('mydata.RData')
save.image() #立刻结束当前R绘画,写入.RData文件中
- 探索和理解数据
str(data)
summary()
mean()
median()
IQR() #四分位距,Q1与Q3之差,体现数据分散程度
quantile() #返回5数
quantile(data$price, probs=c(0.01,0.99)) #第1和第99百分位数
quantile(data$price, seq(from=0, to=1, by=0.2))
#可视化
boxplot()
hist()
- 均值比中位值对极端值(异常值)更敏感
- 偏度(skew):比如,右偏是右边比左边更为分散(不要理解反了)
- 均匀分布:所有值等可能发生。并非所有随机事件都服从均匀分布
- 衡量数据分散程度:方差var或标准差sd(方差平方根),var越大表在均值附近越分散,sd平均来看每个值和均值相差多少
var()
sd()
- 68-95-99.7规则(经验法则):正态分布中68%的值落在均值左右1个标准差的范围内,而95%和99.7%的值各自落在均值左右2个和3个标准差的范围内。数值落在均值的3个标准差以外是极端罕见事件。
- 分类变量探索:
table()
prop.table()
- 变量间关系探索
plot(x,y)
# 并非所有关联都成直线
二元指示变量(哑变量):如汽车有9种颜色分为2组,一组保守色,一组非保守色,指示变量可分别设为1和0
双向交叉表/列联表:
library(gmodels)
CrossTable(x,y) #chisq = TRUE获取卡方检验结果,概率值越小,说明两个变量相关越大
CrossTable的输出示例:
机器学习与R语言系列推文汇总:
【机器学习与R语言】1-机器学习简介
【机器学习与R语言】2-K近邻(kNN)
【机器学习与R语言】3-朴素贝叶斯(NB)
【机器学习与R语言】4-决策树
【机器学习与R语言】5-规则学习
【机器学习与R语言】6-线性回归
【机器学习与R语言】7-回归树和模型树
【机器学习与R语言】8-神经网络
【机器学习与R语言】9-支持向量机
【机器学习与R语言】10-关联规则
【机器学习与R语言】11-Kmeans聚类
【机器学习与R语言】12-如何评估模型的性能?
【机器学习与R语言】13-如何提高模型的性能?
【机器学习与R语言】1-机器学习简介的更多相关文章
- 【机器学习与R语言】13- 如何提高模型的性能?
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 ...
- 【机器学习与R语言】12- 如何评估模型的性能?
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的 ...
- 【机器学习与R语言】11- Kmeans聚类
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Km ...
- 【机器学习与R语言】10- 关联规则
目录 1.理解关联规则 1)基本认识 2)Apriori算法 2.关联规则应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解关联规则 1)基本认识 购物 ...
- 【机器学习与R语言】9- 支持向量机
目录 1.理解支持向量机(SVM) 1)SVM特点 2)用超平面分类 3)对非线性空间使用核函数 2. 支持向量机应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高性能 ...
- 【机器学习与R语言】8- 神经网络
目录 1.理解神经网络 1)基本概念 2)激活函数 3)网络拓扑 4)训练算法 2.神经网络应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高性能 1.理解神经网络 1) ...
- 【机器学习与R语言】7-回归树和模型树
目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达 ...
- 【机器学习与R语言】6-线性回归
目录 1.理解回归 1)简单线性回归 2)普通最小二乘估计 3)相关系数 4)多元线性回归 2.线性回归应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理 ...
- 【机器学习与R语言】5-规则学习算法
目录 1.分类规则原理 1.1 1R单规则算法 1.2 RIPPER算法 2. 规则学习应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估性能 5)提高性能 6)选择决策树中的分类规则 ...
随机推荐
- mysqld_exporter监控mysql信息
mysqld_exporter监控mysql信息 一.背景 二.prometheus接入mysqld_exporter 1.安装mysqld_exporter 2.创建mysqld_exporter用 ...
- 树链剖分好(du)题(liu)选做
1.luogu P4315 月下"毛景树" 题目链接 前言: 这大概是本蒟蒻A掉的题里面码量最大的一道题了.我自认为码风比较紧凑,但还是写了175行. 从下午2点多调到晚上8点.中 ...
- C++ 、Qt计算时间的方法
原文链接:https://blog.csdn.net/chy555chy/article/details/53405072 Qt计算时间的两种方法: QTime elapsed() : ms QTim ...
- 你一定不知道的Unsafe用法
Unsafe是什么 首先我们说Unsafe类位于rt.jar里面sun.misc包下面,Unsafe翻译过来是不安全的,这倒不是说这个类是不安全的,而是说开发人员使用Unsafe是不安全的,也就是不推 ...
- 便宜的回文串(区间DP)
题目链接:便宜的回文串 这道题刚开始其实还是没有思路的.没办法,只能看题解了... 其实我们在思考问题时,考虑到一段串增或减时会改变它的长度,所以转移时会麻烦... 但其实不用考虑那么多的问题,我们只 ...
- Django(74)drf-spectacular自动生成接口文档
介绍 drf-spectacular是为Django REST Framework生成合理灵活的OpenAPI 3.0模式.它可以自动帮我们提取接口中的信息,从而形成接口文档,而且内容十分详细,再也不 ...
- FastApi下载文件
FastApi下载文件 记得之前我们讲过生成excel文件的事情,那么如何把服务器生成的excel文件正确发送给用户呢? 今天我们就来说说在FastApi中如何正确让用户下载到想要的文件. 基本流程 ...
- Go语言核心36讲(Go语言实战与应用四)--学习笔记
26 | sync.Mutex与sync.RWMutex 从本篇文章开始,我们将一起探讨 Go 语言自带标准库中一些比较核心的代码包.这会涉及这些代码包的标准用法.使用禁忌.背后原理以及周边的知识. ...
- 暑假算法练习Day1
为了加强个人的算法能力,所以准备每天都做适当的算法练习,并在隔天加以回顾. 依托PTA.Leetcode平台进行训练(暂定每天三题C++,对于Leetcode平台上的练习,由于其解题需以类的形式进行提 ...
- 架构小试之IDL
本文转载自我自己的博客,感兴趣的老爷们可以关注~:https://www.miaoerduo.com/2021/11/16/arch-idl/ 为什么IDL的介绍也放在这里呢?一方面是我想不到放哪里, ...