题目描述
这个游戏是这样的,你有一个初始序列S ,你每次可以选择一段任意长度的连续区间,把他们+1 再膜k,给定目标序列,你需要尝试用尽量少的操作次数将初始序列变为目标序列。作为一名优秀的OIer,您认为这个游戏十分naive,所以您打算撸一个游戏脚本来取到最优解。
输入
第一行一个T 表示数据组数。
对于每组数据,第一行两个整数表示序列长度和模数。
接下来两行分别包含n 个整数,表示初始序列和目标序列。
输出
对于每组数据,输出一行一个整数表示最少操作次数。
样例输入
1
6 4
1 1 3 2 0 2
2 0 2 3 2 0
样例输出
4
提示
样例解释
四次操作的一种方式为:(1,6)(2,3)(2,3)(5,6)
数据范围
1≤T≤5
对于10% 的数据满足n≤1
对于30% 的数据满足n≤10
对于50% 的数据满足n≤100
对于70% 的数据满足n≤5000
对于100% 的数据满足1≤n≤100000,1≤k≤100,0≤x1≤n≤100000,1≤k≤100,0≤x(序列中的任一数)<k

题解:

这题有个经典模型。

给一个序列,有区间都加1和都减1操作,求变成全0的最小操作数。

这就先差分,然后正负抵消着操作即可,最后可能会剩一些正的(或负的)在加上(就是正数的和和负数的绝对值之和取max)

我们就朝着上述模型转换。

我们先考虑每个位置最少需要减多少次,设$a[i]$表示每个位置最少需要操作多少次,设$dif[i]=a[i]-a[i-1]$(就是$a[i]$的差分数组),那么在不考虑模的情况下,$ans=Σmax(dif[i],0)$。这里不考虑负的是因为操作数一定是正数,所以这一定是个正数序列,那么一定有:正数之和+负数之和>0  那么  正数之和-负数绝对值之和>0  那么  正数之和>负数绝对值之和。恩,这很显然。然而这句废话我想了半天才想出来。

不难发现$dif[i]$范围在$(-k,k)$,考虑模数带来的影响是使得一段区间的$a[i]$都$+k$,反映在$dif[i]$上就是使得$dif[l]+k$和$dif[r]-k$,所以我们要考虑,如何选取$l$和$r$使得答案更优。

比较显然的是,当$(dif[l]<0$&&$dif[r+1]>0)$选取了$l$和$r$才会使答案更优。具体做法,开一个桶用来装:如果这个位置成为$l$对答案的影响,从左到右扫一边,每次用一个桶将可以成为$l$的位置装起来如果$dif[i]<0$直接就进桶,对于可以成为$r$的位置(就是$dif[i]>0$的位置)我们每次就扫一边桶,找一下可以更新的最大值,如果找到了,就更新答案和桶。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define N 100005
using namespace std;
int T,n,k,a[N],num[N],dif[N],ans,t[105];
int main(){
scanf("%d",&T);
while(T--){
ans=0;
memset(t,0,sizeof t);
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
int b;scanf("%d",&b);
if(b<a[i]) b+=k;
a[i]=b-a[i];
}
for(int i=1;i<=n;i++) dif[i]=a[i]-a[i-1];
for(int i=1;i<=n;i++) ans+=max(dif[i],0);
for(int i=1;i<=n;i++)
if(dif[i]<0) t[dif[i]+k]++;
else{
int del=0,p=0;
for(int j=1;j<=k;j++)
if(t[j]&&del<dif[i]-j) del=dif[i]-(p=j);
if(del){ans=ans-del;t[dif[i]]++;t[p]--;}//要再考虑这个i这个位置成为之后的位置的l
}
printf("%d\n",ans);
}
return 0;
}

DTOJ 3999: 游戏的更多相关文章

  1. [canvas]空战游戏1.18

    空战游戏到今天可以玩了,玩法还是方向键(或AWSD)控制飞机位置,空格键开炮,吃五星升级,被敌机打中降级直到击落,与敌机相撞则GG. 点此下载程序1.16版,用CHrome打开index.html试玩 ...

  2. [Canvas]空战游戏 已经可以玩了 1.13Playable

    空战游戏做到这里,己方运动,己方发射子弹,敌方运动,敌方发射子弹,子弹与飞机碰撞,飞机与飞机碰撞都已经具备了,换言之已经可以玩了. 还需要一个奖励升级系统,在上面显示击落敌机数量等,还有己方不幸被击落 ...

  3. [Canvas]空战游戏进阶 增加己方子弹管理类

    点此下载源码,可用Chrome打开观看. 图例: 代码: <!DOCTYPE html> <html lang="utf-8"> <meta http ...

  4. 使用HTML5开发Kinect体感游戏

    一.简介 我们要做的是怎样一款游戏? 在前不久成都TGC2016展会上,我们开发了一款<火影忍者手游>的体感游戏,主要模拟手游章节<九尾袭来 >,用户化身四代,与九尾进行对决, ...

  5. jQuery实践-网页版2048小游戏

    ▓▓▓▓▓▓ 大致介绍 看了一个实现网页版2048小游戏的视频,觉得能做出自己以前喜欢玩的小游戏很有意思便自己动手试了试,真正的验证了这句话-不要以为你以为的就是你以为的,看视频时觉得看懂了,会写了, ...

  6. Unity游戏内版本更新

    最近研究了一下游戏内apk包更新的方法. ios对于应用的管理比较严格,除非热更新脚本,不太可能做到端内大版本包的更新.然而安卓端则没有此限制.因此可以做到不跳到网页或应用商店,就覆盖更新apk包. ...

  7. 游戏服务器菜鸟之C#初探一游戏服务

    本人80后程序猿一枚,原来搞过C++/Java/C#,因为工作原因最后选择一直从事C#开发,因为读书时候对游戏一直比较感兴趣,机缘巧合公司做一个手游的项目,我就开始游戏服务器的折腾之旅. 游戏的构架是 ...

  8. iOS审核这些坑,腾讯游戏也踩过

    作者:Jamie,专项技术测试工程师,在iOS预审和ASO优化领域从事专项测试相关工作,为腾讯游戏近100个产品提供专项服务. WeTest 导读 在App上架苹果应用商店的过程中,相信大多数iOS开 ...

  9. 漫谈C#编程语言在游戏领域的应用

    0x00 前言 随着微软越来越开放,C#也变得越来越吸引人们的眼球.而在游戏行业中,C#也开始慢慢地获得了关注.这不, 网易绝代双娇手游团队已经全面使用.Net Core支持前后端统一C#开发,跨平台 ...

随机推荐

  1. 代码混淆保安全「GitHub 热点速览 v.21.43」

    作者:HelloGitHub-小鱼干 虽然让代码难以阅读看似是件难以理解的事情,但是混淆后的代码起到了类似加密的作用,而且经过混淆的代码依旧能实现原代码的功能.javascript-obfuscato ...

  2. DevOps 时代的高效测试之路

    10 月 22 日,2021 届 DevOps 国际峰会在北京顺利召开,来自国内外的顶级技术专家共同畅谈 DevOps 体系与方法.过程与实践.工具与技术.CODING 测试及研发流程管理产品总监程胜 ...

  3. pyinstaller和wordcloud和jieba的使用案列

    一.pyinstaller库 1.简介 pyinstaller库:将脚本程序转变为可执行(.exe)格式的第三方库 注意:需要在.py文件所在目录进行以下命令,图标扩展名是.ico 2.格式: pyi ...

  4. Noip模拟6 2021.6.10

    T1 辣鸡 首先吐嘈一下,这题的测试点就离谱,不说了,附上我65分代码: 1 #include<bits/stdc++.h> 2 #define int long long 3 using ...

  5. PCB中,Solder Mask与Paste Mask有啥区别呢?

    Solder Mask Layers: 即阻焊层.顾名思义,他的存在是为了防止PCB在过波峰焊的时候,不应涂锡的地方粘上锡. 可以简单理解为一个洞,该区域(洞)以外的地方,都不允许有焊锡,即只能涂绿油 ...

  6. 我的一些JAVA基础见解

    这个学期学习JAVA基础课,虽说之前都自学过,但在学习时仍可以思考一些模糊不清的问题,可以更深一步的思考.在这里写下一些需要深入的知识点,对小白们也很友好~ 一.Java数据类型 1.基本数据类型 这 ...

  7. 如何使用原生的Ribbon

    什么是Ribbon 之前分析了如何使用原生的Feign,今天我们来研究 Netflix 团队开发的另外一个类库--Ribbon. Ribbon 和 Feign 有很多相似的地方,首先,它们本质上都是 ...

  8. [转]浅谈电路设计中应用DDR3处理缓存问题

    本文转自:浅谈电路设计中应用DDR3处理缓存问题_若海人生的专栏-CSDN博客 DDR系列SDRAM存储芯片的高速率.高集成度和低成本使其理所当然成为存储芯片中的一霸.在PC和消费电子领域自是如此,它 ...

  9. usb设备无法识别

    之前用飞线用旧板子飞线连接了一个wifi模块到usb0口上,调试ok的,现在新设计的板子回来了,wifi模块是连接在usb2口上的,系统起来后发现wlan0不存在,用lsusb查看wifi模块的usb ...

  10. Luogu P2024 [NOI2001]食物链 | 并查集

    题目链接 思路:并查集,因为一开始我们并不知道每一只动物是哪一个种类的,所以我们干脆建立三倍于n的空间,1~n这三分之一用来存第i只动物是A的情况,n+1~2n这三分之一用来存第(i-n)只动物是B的 ...