Codeforces 547D - Mike and Fish(欧拉回路)
首先考虑将题目中的条件转化为图论的语言。看到“行”“列”,我们很自然地想到二分图中行、列转点,点转边的套路,对于每一行 \(x\) 新建一个点 \(R(x)\),对于每一列 \(x\) 也新建一个点 \(C(y)\)。考虑对于点 \((x_i,y_i)\),若其被染上红色,就连边 \(R(x_i)\to C(y_i)\),否则连边 \(C(y_i)\to R(x_i)\)。那么显然对于每一行而言,其红色格子的个数就是该行所对应的点的出度,其蓝色格子的个数就是该行所对应的点的入度;对于每一列而言,其红色格子的个数就是该行所对应的点的入度,其蓝色格子的个数就是该行所对应的点的出度。
因此我们可将题目转化为:给定一张二分图,要求给每条边定向,使每个点入度与出度之差的绝对值不超过 \(1\)。
我们不妨先考虑原题的一个弱化版本。假设原图中所有点度数都是偶数,那么我们要求一个无向图,使得每个点的入度等于出度。这显然可以用欧拉回路解决,由于每个点度数都是偶数,因此图的每个连通块的导出子图都存在欧拉回路,那么我们对于每个连通块跑一遍欧拉回路,假设为 \(v_1\to v_2\to v_3\to\dots\to v_k\to v_1\),那么我们只需对于 \(\forall i\in [1,k]\) 将 \(v_i\) 与 \(v_{i+1}\) 之间的边定向为 \(v_i\to v_{i+1}\) 即可,因为 \(\forall i\in [1,k]\),显然 \(v_{i-1}\to v_i\) 的边会为 \(v_i\) 的入度产生 \(1\) 的贡献,\(v_{i}\to v_{i+1}\) 的边会为 \(v_i\) 的出度产生 \(1\) 的贡献,因此 \(v_i\) 的入度永远等于出度,符合题目要求。
最后考虑原题,本题一个巧妙之处就在于奇点怎么处理。显然对于一个奇点而言,我们要求它的出度与入度之差为 \(\pm 1\),而我们希望它的出度与入度之差为 \(0\),这样就能归约到弱化版了。因此我们考虑建立一个虚点,将所有奇点与该虚点之间连边,显然对于原图一个合法的定向方式,我们总能控制这些奇点与虚点连边的方向使得每个奇点的入度都等于出度。又根据有向图 \(\sum indeg_i=\sum outdeg_i\) 可知该虚点的入度也等于出度,故我们在新图上跑欧拉回路即可。
时间复杂度线性。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int DELTA=2e5+2;
int n,deg[DELTA*2+5],hd[DELTA*2+5],to[DELTA*6+5],nxt[DELTA*6+5],ec=1;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int vis[DELTA*3+5];
void dfs(int x){
for(int &e=hd[x];e;e=nxt[e])
if(!vis[e>>1]) vis[e>>1]=1+(x<=DELTA),dfs(to[e]);
}
int main(){
scanf("%d",&n);
for(int i=1,x,y;i<=n;i++){
scanf("%d%d",&x,&y);++deg[x];++deg[y+DELTA];
adde(x,y+DELTA);adde(y+DELTA,x);
}
for(int i=1;i<=DELTA*2;i++)
if(deg[i]&1) adde(0,i),adde(i,0);
for(int i=1;i<=DELTA;i++) dfs(i);
for(int i=1;i<=n;i++) putchar((vis[i]==1)?'r':'b');
return 0;
}
Codeforces 547D - Mike and Fish(欧拉回路)的更多相关文章
- CodeForces - 547D: Mike and Fish (转化为欧拉回路)(优化dfs稠密图)(定向问题)
As everyone knows, bears love fish. But Mike is a strange bear; He hates fish! The even more strange ...
- Codeforces.547D.Mike and Fish(思路 欧拉回路)
题目链接 \(Description\) 给定平面上n个点,将这些点染成红or蓝色,要求每行.每列红色点与蓝色点数量的差的绝对值<=1.输出方案(保证有解). \(Solution\) 参考这 ...
- Codeforces 547D Mike and Fish
Description 题面 题目大意:有一个的网格图,给出其中的 \(n\) 个点,要你给这些点染蓝色或红色,满足对于每一行每一列都有红蓝数量的绝对值之差不超过1 Solution 首先建立二分图, ...
- CodeForces 547D Mike and Fish 思维
题意: 二维平面上给出\(n\)个点,然后对每个点进行染色:红色和蓝色,要求位于同一行或同一列的点中,红色点和蓝色点的个数相差不超过1 分析: 正解是求欧拉路径,在这篇博客中看到一个巧妙的思路: 对于 ...
- Codeforces 247D Mike and Fish
Mike and Fish 我们可以把这个模型转换一下就变成有两类点,一类是X轴, 一类是Y轴, 每个点相当于对应的点之间建一条边, 如果这条边变红两点同时+1, 变蓝两点同时-1. 我们能发现这个图 ...
- cf547D. Mike and Fish(欧拉回路)
题意 题目链接 Sol 说实话这题我到现在都不知道咋A的. 考试的时候是对任意相邻点之间连边,然后一分没有 然后改成每两个之间连一条边就A了.. 按说是可以过掉任意坐标上的点都是偶数的数据啊.. #i ...
- 547D Mike and Fish
传送门 分析 见正睿10.3笔记 代码 #include<iostream> #include<cstdio> #include<cstring> #include ...
- CF 547 D. Mike and Fish
D. Mike and Fish http://codeforces.com/contest/547/problem/D 题意: 给定平面上n个点,将这些点染成红或者蓝色,要求每行.每列红色点与蓝色点 ...
- 「CF547D」 Mike and Fish
「CF547D」 Mike and Fish 传送门 介绍三种做法. \(\texttt{Solution 1}\) 上下界网络流 我们将每一行.每一列看成一个点. 两种颜色的数量最多相差 \(1\) ...
随机推荐
- Windows内核开发-10-监听对象
Windows内核开发-10-监听对象 Windows内核除了可以监听进程,线程.dll还可以监听特定的对象和注册表.这里先讲一下监听对象. 监听对象 内核提供了一种可以监听对特定的对象类型的句柄进行 ...
- Java 是编译型语言还是解释型语言?
Java首先由编译器编译成.class类型的文件,这个是java自己类型的文件.然后在通过虚拟机(JVM)从.class文件中读一行解释执行一行.因此Java是一种半编译半解释的语言,理解这种意思即可 ...
- Noip模拟22 2021.7.21
T1 d 简化题意就是找到相对平均长宽的偏移量较大的矩形给他删掉 可以说是个贪心,按照a,b分别为第一关键字排序 然后假装删去要求的那么多个按a排序的较小的,然后再去b中, 找到 删去的a中的那几个矩 ...
- 【BZOJ 1419】Red is good [概率DP]
我 是 Z Z 概率好玄啊(好吧是我太弱.jpg Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻 ...
- noip模拟11
T1 math 就挺水一小破题目,第一眼看好像不可做,看着看着突然发现假设x和y的最大公约数是gcd,那么kx%y一定是gcd的倍数, 然后想到可以把所有数字与k的gcd求出来,打一个完全背包,可是仔 ...
- 编译qwt遇到的问题
在windows下使用mingw编译从git上下载的qwt工程下的tests时一直提示一下错误: error: undefined reference to `qMain(int, char**)' ...
- 攻防世界 杂项 2.embarrass
解1: linux环境下直接strings misc_02.pcapng | grep flag可得flag. 解2: 使用wireshark搜索flag. 解3: winhex搜索flag.
- Luogu P2827 [NOIp2016提高组]蚯蚓 | 神奇的队列
题目链接 80分思路: 弄一个优先队列,不停地模拟,切蚯蚓时就将最长的那一条出队,然后一分为二入队,简单模拟即可.还要弄一个标记,表示从开始到当前时间每一条蚯蚓应该加上的长度,操作时就加上,入队时就减 ...
- mac bigsur 安装mysql步骤
我首先下载的是mysql8.x,安装完后,在偏好设置里面,双击mysql图标,弹窗:未能载入偏好设置面板MySQL,重启无果,查攻略说是要安装5.7.x,在mysql官网上,下载5.7.29 强烈建议 ...
- 前端需要了解的颜色模型,RGB、HSL和HSV
颜色模型,是用来表示颜色的数学模型.比如最常见的 RGB模型,使用 红绿蓝 三色来表示颜色. 一般的颜色模型,可以按照如下分类: 面向硬件设备的颜色模型:RGB,CMYK,YCrCb. 面向视觉感知的 ...