写在前面

准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正。

如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn

产品推荐 - 矩阵分解问题示例

ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法
v0.8 动态 API 最新版本 控制台应用程序 .txt 文件 推荐 矩阵分解 MatrixFactorizationTrainer (One Class)

在这个示例中,您可以看到如何使用ML.NET来构建产品推荐方案。

本示例中的推荐方式基于共同购买或经常一起购买的产品,这意味着它将根据客户的购买历史向客户推荐一组产品。

在这个示例中,基于经常一起购买的学习模型来推荐产品。

问题

在本教程中,我们将使用亚马逊共同购买产品数据集。

我们将使用One-Class因式分解机来构建我们的产品推荐器,它使用协同过滤方法。

我们介绍的one-class和其他因式分解机的区别在于,在这个数据集中,我们只有购买历史的信息。

我们没有评分或其他详细信息,如产品描述等。

“协同过滤”是在一个基本假设的情况下运作的,即如果某人A在一个问题上与某人B具有相同的意见,则在另一个问题上,相对其他随机选择的人,A更倾向于B的观点。

数据集

原始数据来自SNAP:

https://snap.stanford.edu/data/amazon0302.html

ML 任务 - 矩阵分解 (推荐)

这个示例的ML任务是矩阵分解,它是一个执行协同过滤的有监督的机器学习任务。

解决方案

要解决此问题,您需要在现有训练数据上建立和训练ML模型,评估其有多好(分析获得的指标),最后您可以使用/测试模型来预测给定输入数据变量的需求。

1. 建立模型

建立模型包括:

  • https://snap.stanford.edu/data/amazon0302.html 下载并复制数据集文件Amazon0302.txt。

  • 使用以下内容替换列名:ProductID ProductID_Copurchased

  • 在读取器中,我们已经提供了KeyRange,并且产品ID已经编码,我们需要做的就是使用几个额外的参数调用MatrixFactorizationTrainer。

下面是用于建立模型的代码:


//STEP 1: Create MLContext to be shared across the model creation workflow objects
var ctx = new MLContext(); //STEP 2: Create a reader by defining the schema for reading the product co-purchase dataset
// Do remember to replace amazon0302.txt with dataset from
https://snap.stanford.edu/data/amazon0302.html
var reader = ctx.Data.TextReader(new TextLoader.Arguments()
{
Separator = "tab",
HasHeader = true,
Column = new[]
{
new TextLoader.Column("Label", DataKind.R4, 0),
new TextLoader.Column("ProductID", DataKind.U4, new [] { new TextLoader.Range(0) }, new KeyRange(0, 262110)),
new TextLoader.Column("CoPurchaseProductID", DataKind.U4, new [] { new TextLoader.Range(1) }, new KeyRange(0, 262110))
}
}); //STEP 3: Read the training data which will be used to train the movie recommendation model
var traindata = reader.Read(new MultiFileSource(TrainingDataLocation)); //STEP 4: Your data is already encoded so all you need to do is call the MatrixFactorization Trainer with a few extra hyperparameters:
// LossFunction, Alpa, Lambda and a few others like K and C as shown below.
var est = ctx.Recommendation().Trainers.MatrixFactorization("ProductID", "CoPurchaseProductID",
labelColumn: "Label",
advancedSettings: s =>
{
s.LossFunction = MatrixFactorizationTrainer.LossFunctionType.SquareLossOneClass;
s.Alpha = 0.01;
s.Lambda = 0.025;
// For better results use the following parameters
//s.K = 100;
//s.C = 0.00001;
});

2. 训练模型

一旦定义了评估器,就可以根据可用的训练数据对评估器进行训练。

这将返回一个训练过的模型。


//STEP 5: Train the model fitting to the DataSet
//Please add Amazon0302.txt dataset from https://snap.stanford.edu/data/amazon0302.html to Data folder if FileNotFoundException is thrown.
var model = est.Fit(traindata);

3. 使用模型

我们将通过创建预测引擎/函数来执行此模型的预测,如下所示。

    public class Copurchase_prediction
{
public float Score { get; set; }
} public class ProductEntry
{
[KeyType(Contiguous = true, Count = 262111, Min = 0)]
public uint ProductID { get; set; } [KeyType(Contiguous = true, Count = 262111, Min = 0)]
public uint CoPurchaseProductID { get; set; }
}

一旦创建了预测引擎,就可以预测两个产品被共同购买的分数。

    //STEP 6: Create prediction engine and predict the score for Product 63 being co-purchased with Product 3.
// The higher the score the higher the probability for this particular productID being co-purchased
var predictionengine = model.MakePredictionFunction<ProductEntry, Copurchase_prediction>(ctx);
var prediction = predictionengine.Predict(
new ProductEntry()
{
ProductID = 3,
CoPurchaseProductID = 63
});

ML.NET 示例:推荐之One Class 矩阵分解的更多相关文章

  1. 推荐算法之用矩阵分解做协调过滤——LFM模型

    隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM ...

  2. HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法

    一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...

  3. 机器学习笔记7:矩阵分解Recommender.Matrix.Factorization

    目录 1矩阵分解概述 1.1用在什么地方 1.2推荐的原理 2矩阵分解的原理 2.1目标函数 2.2 损失函数 2.3 通过梯度下降的方法求得结果 3 代码实现 参考地址: 贪心学院:https:// ...

  4. ML.NET 示例:推荐之矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  5. ML.NET 示例:推荐之场感知分解机

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  6. 【Math for ML】矩阵分解(Matrix Decompositions) (下)

    [Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...

  7. ML.NET 示例:开篇

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  8. ML.NET 示例:目录

    ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn 英文原版请访问:https://github.com/ ...

  9. 用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...

随机推荐

  1. Windows系统java下载与安装

    Windows系统java下载与安装 一.前言 作者:深圳-风尘 联系方式:QQ群[585499566] 博客:https://www.cnblogs.com/1fengchen1/ 能读懂本文档人: ...

  2. Android--获取手机联系人和Sim卡联系人

    最近公司做的一个放贷APP,要求后台偷偷获取用户的联系人来做风控,所以...(大家忽略就好) 获取手机联系人很简单,就是查询android的数据库,用到的是ContentProvider进行跨进程通讯 ...

  3. leetcode-978. 最长湍流子数组

    leetcode-978. 最长湍流子数组 Points 数组 DP 题意 当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组: 若 i <= ...

  4. gitlab runner安装与使用

    今天来讲一下如何使用gitlab-runner 下载runner,根据自己对应服务器的型号自行选择下载: # Linux x86- sudo wget -O /usr/local/bin/gitlab ...

  5. Bresenham算法的实现思路

    条件已知两个点的坐标p1(x0,y0),p2(x1,y1)要求画出这条直线 之后的e代表每次的误差积累,初始值为0,可以计算出斜率为k=dy/dx=(y0-y1)/(x0-x1) 1.x为阶跃步长(直 ...

  6. raid1 raid2 raid5 raid6 raid10的优缺点和做各自raid需要几块硬盘

    Raid 0:一块硬盘或者以上就可做raid0优势:数据读取写入最快,最大优势提高硬盘容量,比如3快80G的硬盘做raid0 可用总容量为240G.速度是一样.缺点:无冗余能力,一块硬盘损坏,数据全无 ...

  7. web前端(8)—— CSS选择器

    选择器 选择器,说白了就是html的标签或者其相关特性,在一个HTML页面中会有很多很多的元素,不同的元素可能会有不同的样式,某些元素又需要设置相同的样式,选择器就是用来从HTML页面中查找特定元素的 ...

  8. Powershell测试端口状态

    function Test-Port { Param([string]$ComputerName,$port = 5985,$timeout = 1000) try { $tcpclient = Ne ...

  9. Spring MVC 之请求参数和路径变量

    请求参数和路径变量都可以用于发送值给服务器.二者都是URL的一部分.请求参数采用key=value形式,并用“&”分隔. 例如,下面的URL带有一个名为productId的请求参数,其值为3: ...

  10. linux ubuntu 关于vim得一些基本命令

    1.vim显示行号 :set number 2. 快捷键 J 向下 K 往上 H 向左 L 向右 ctrl+shift+T 打开新窗口 ctrl+Page Down 所有vim窗口向下切换 ctrl+ ...