ML.NET 示例:推荐之One Class 矩阵分解
写在前面
准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正。
如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn
产品推荐 - 矩阵分解问题示例
ML.NET 版本 | API 类型 | 状态 | 应用程序类型 | 数据类型 | 场景 | 机器学习任务 | 算法 |
---|---|---|---|---|---|---|---|
v0.8 | 动态 API | 最新版本 | 控制台应用程序 | .txt 文件 | 推荐 | 矩阵分解 | MatrixFactorizationTrainer (One Class) |
在这个示例中,您可以看到如何使用ML.NET来构建产品推荐方案。
本示例中的推荐方式基于共同购买或经常一起购买的产品,这意味着它将根据客户的购买历史向客户推荐一组产品。
在这个示例中,基于经常一起购买的学习模型来推荐产品。
问题
在本教程中,我们将使用亚马逊共同购买产品数据集。
我们将使用One-Class因式分解机来构建我们的产品推荐器,它使用协同过滤方法。
我们介绍的one-class和其他因式分解机的区别在于,在这个数据集中,我们只有购买历史的信息。
我们没有评分或其他详细信息,如产品描述等。
“协同过滤”是在一个基本假设的情况下运作的,即如果某人A在一个问题上与某人B具有相同的意见,则在另一个问题上,相对其他随机选择的人,A更倾向于B的观点。
数据集
原始数据来自SNAP:
https://snap.stanford.edu/data/amazon0302.html
ML 任务 - 矩阵分解 (推荐)
这个示例的ML任务是矩阵分解,它是一个执行协同过滤的有监督的机器学习任务。
解决方案
要解决此问题,您需要在现有训练数据上建立和训练ML模型,评估其有多好(分析获得的指标),最后您可以使用/测试模型来预测给定输入数据变量的需求。
1. 建立模型
建立模型包括:
从 https://snap.stanford.edu/data/amazon0302.html 下载并复制数据集文件Amazon0302.txt。
使用以下内容替换列名:ProductID ProductID_Copurchased
在读取器中,我们已经提供了KeyRange,并且产品ID已经编码,我们需要做的就是使用几个额外的参数调用MatrixFactorizationTrainer。
下面是用于建立模型的代码:
//STEP 1: Create MLContext to be shared across the model creation workflow objects
var ctx = new MLContext();
//STEP 2: Create a reader by defining the schema for reading the product co-purchase dataset
// Do remember to replace amazon0302.txt with dataset from
https://snap.stanford.edu/data/amazon0302.html
var reader = ctx.Data.TextReader(new TextLoader.Arguments()
{
Separator = "tab",
HasHeader = true,
Column = new[]
{
new TextLoader.Column("Label", DataKind.R4, 0),
new TextLoader.Column("ProductID", DataKind.U4, new [] { new TextLoader.Range(0) }, new KeyRange(0, 262110)),
new TextLoader.Column("CoPurchaseProductID", DataKind.U4, new [] { new TextLoader.Range(1) }, new KeyRange(0, 262110))
}
});
//STEP 3: Read the training data which will be used to train the movie recommendation model
var traindata = reader.Read(new MultiFileSource(TrainingDataLocation));
//STEP 4: Your data is already encoded so all you need to do is call the MatrixFactorization Trainer with a few extra hyperparameters:
// LossFunction, Alpa, Lambda and a few others like K and C as shown below.
var est = ctx.Recommendation().Trainers.MatrixFactorization("ProductID", "CoPurchaseProductID",
labelColumn: "Label",
advancedSettings: s =>
{
s.LossFunction = MatrixFactorizationTrainer.LossFunctionType.SquareLossOneClass;
s.Alpha = 0.01;
s.Lambda = 0.025;
// For better results use the following parameters
//s.K = 100;
//s.C = 0.00001;
});
2. 训练模型
一旦定义了评估器,就可以根据可用的训练数据对评估器进行训练。
这将返回一个训练过的模型。
//STEP 5: Train the model fitting to the DataSet
//Please add Amazon0302.txt dataset from https://snap.stanford.edu/data/amazon0302.html to Data folder if FileNotFoundException is thrown.
var model = est.Fit(traindata);
3. 使用模型
我们将通过创建预测引擎/函数来执行此模型的预测,如下所示。
public class Copurchase_prediction
{
public float Score { get; set; }
}
public class ProductEntry
{
[KeyType(Contiguous = true, Count = 262111, Min = 0)]
public uint ProductID { get; set; }
[KeyType(Contiguous = true, Count = 262111, Min = 0)]
public uint CoPurchaseProductID { get; set; }
}
一旦创建了预测引擎,就可以预测两个产品被共同购买的分数。
//STEP 6: Create prediction engine and predict the score for Product 63 being co-purchased with Product 3.
// The higher the score the higher the probability for this particular productID being co-purchased
var predictionengine = model.MakePredictionFunction<ProductEntry, Copurchase_prediction>(ctx);
var prediction = predictionengine.Predict(
new ProductEntry()
{
ProductID = 3,
CoPurchaseProductID = 63
});
ML.NET 示例:推荐之One Class 矩阵分解的更多相关文章
- 推荐算法之用矩阵分解做协调过滤——LFM模型
隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM ...
- HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法
一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...
- 机器学习笔记7:矩阵分解Recommender.Matrix.Factorization
目录 1矩阵分解概述 1.1用在什么地方 1.2推荐的原理 2矩阵分解的原理 2.1目标函数 2.2 损失函数 2.3 通过梯度下降的方法求得结果 3 代码实现 参考地址: 贪心学院:https:// ...
- ML.NET 示例:推荐之矩阵分解
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- ML.NET 示例:推荐之场感知分解机
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (下)
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...
- ML.NET 示例:开篇
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- ML.NET 示例:目录
ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn 英文原版请访问:https://github.com/ ...
- 用Spark学习矩阵分解推荐算法
在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...
随机推荐
- CentOS 7.x默认没有ifconfig?!
刚装了CentOS 7.0,安装界面非常漂亮,装完后发现没有ifconfig命令.yum install net-tools后出现. 有两个可能,一个是mini版本的原因,二一个可能我在安装过程中配置 ...
- IDEA实用插件Lombok
Lombok Lombok是一个可以通过简单的注解形式来帮助我们简化消除一些必须有但显得很臃肿的Java代码的工具,通过使用对应的注解,可以在编译源码的时候生成对应的方法.通常,我们所定义的对象和be ...
- CSS杂谈(2)
opacity 属性设置元素的不透明级别. 语法 opacity: value|inherit; 值 描述 value 规定不透明度.从 0.0 (完全透明)到 1.0(完全不透明). i ...
- spring4笔记----“零配置”:spring提供的几个Annotation标注
@Component :标注一个普通的Spring Bean类 @Controller :标注一个控制器组件器 @Service :标注一个业务逻辑组件器 @Repository ...
- MSSQL sql server order by 1,2 的具体含义
转自:http://www.maomao365.com/?p=5416 摘要: order by 1,2 的含义是对表的第一列 按照从小到大的顺序进行排列 然后再对第二列按照从小到大的顺序进行排列 ...
- Linux CFS调度器之pick_next_task_fair选择下一个被调度的进程--Linux进程的管理与调度(二十八)
1. CFS如何选择最合适的进程 每个调度器类sched_class都必须提供一个pick_next_task函数用以在就绪队列中选择一个最优的进程来等待调度, 而我们的CFS调度器类中, 选择下一个 ...
- adb入门学习笔记
连接模拟器(模拟器桥接模式) 使用adb devices列出已连接到工作站的设备. 使用adb shell 启动设备或模拟器上的shell. 列出设备已安装的所有软件包 将电脑文件移动到手机模拟器上( ...
- M码小黄衫买家秀=w=
M码小黄衫买家秀=w= 17°的天气穿不了短袖polo..就只能这样强行上图啦~ 因为我一直耿耿于大一面向对象课上拿到的那件XL码小黄衫,长到能穿到膝盖,拍小黄衫全家福时候只能很凄凉的借了件小号的穿, ...
- 使用Razor Generator构建模块化ASP.NET MVC应用程序
在构建Web应用程序的时候,我们很难做到模块化的开发,这是因为Web应用程序不仅仅包含编译的C#代码,还包含了js.css和aspx等资源. 在ASP.NET MVC中,我们发布应用程序的时候,还会包 ...
- 如何设计一个"好的"测试用例?
什么才算是“好的”测试用例? 好的测试用例一定是一个完备的集合,它能够覆盖所有等价类以及各种边界值,而跟能否发现缺陷无关. "好的"测试用例必须具备哪些特征? 一个“好的”测试用例 ...