写在前面

准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正。

如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn

产品推荐 - 矩阵分解问题示例

ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法
v0.8 动态 API 最新版本 控制台应用程序 .txt 文件 推荐 矩阵分解 MatrixFactorizationTrainer (One Class)

在这个示例中,您可以看到如何使用ML.NET来构建产品推荐方案。

本示例中的推荐方式基于共同购买或经常一起购买的产品,这意味着它将根据客户的购买历史向客户推荐一组产品。

在这个示例中,基于经常一起购买的学习模型来推荐产品。

问题

在本教程中,我们将使用亚马逊共同购买产品数据集。

我们将使用One-Class因式分解机来构建我们的产品推荐器,它使用协同过滤方法。

我们介绍的one-class和其他因式分解机的区别在于,在这个数据集中,我们只有购买历史的信息。

我们没有评分或其他详细信息,如产品描述等。

“协同过滤”是在一个基本假设的情况下运作的,即如果某人A在一个问题上与某人B具有相同的意见,则在另一个问题上,相对其他随机选择的人,A更倾向于B的观点。

数据集

原始数据来自SNAP:

https://snap.stanford.edu/data/amazon0302.html

ML 任务 - 矩阵分解 (推荐)

这个示例的ML任务是矩阵分解,它是一个执行协同过滤的有监督的机器学习任务。

解决方案

要解决此问题,您需要在现有训练数据上建立和训练ML模型,评估其有多好(分析获得的指标),最后您可以使用/测试模型来预测给定输入数据变量的需求。

1. 建立模型

建立模型包括:

  • https://snap.stanford.edu/data/amazon0302.html 下载并复制数据集文件Amazon0302.txt。

  • 使用以下内容替换列名:ProductID ProductID_Copurchased

  • 在读取器中,我们已经提供了KeyRange,并且产品ID已经编码,我们需要做的就是使用几个额外的参数调用MatrixFactorizationTrainer。

下面是用于建立模型的代码:


//STEP 1: Create MLContext to be shared across the model creation workflow objects
var ctx = new MLContext(); //STEP 2: Create a reader by defining the schema for reading the product co-purchase dataset
// Do remember to replace amazon0302.txt with dataset from
https://snap.stanford.edu/data/amazon0302.html
var reader = ctx.Data.TextReader(new TextLoader.Arguments()
{
Separator = "tab",
HasHeader = true,
Column = new[]
{
new TextLoader.Column("Label", DataKind.R4, 0),
new TextLoader.Column("ProductID", DataKind.U4, new [] { new TextLoader.Range(0) }, new KeyRange(0, 262110)),
new TextLoader.Column("CoPurchaseProductID", DataKind.U4, new [] { new TextLoader.Range(1) }, new KeyRange(0, 262110))
}
}); //STEP 3: Read the training data which will be used to train the movie recommendation model
var traindata = reader.Read(new MultiFileSource(TrainingDataLocation)); //STEP 4: Your data is already encoded so all you need to do is call the MatrixFactorization Trainer with a few extra hyperparameters:
// LossFunction, Alpa, Lambda and a few others like K and C as shown below.
var est = ctx.Recommendation().Trainers.MatrixFactorization("ProductID", "CoPurchaseProductID",
labelColumn: "Label",
advancedSettings: s =>
{
s.LossFunction = MatrixFactorizationTrainer.LossFunctionType.SquareLossOneClass;
s.Alpha = 0.01;
s.Lambda = 0.025;
// For better results use the following parameters
//s.K = 100;
//s.C = 0.00001;
});

2. 训练模型

一旦定义了评估器,就可以根据可用的训练数据对评估器进行训练。

这将返回一个训练过的模型。


//STEP 5: Train the model fitting to the DataSet
//Please add Amazon0302.txt dataset from https://snap.stanford.edu/data/amazon0302.html to Data folder if FileNotFoundException is thrown.
var model = est.Fit(traindata);

3. 使用模型

我们将通过创建预测引擎/函数来执行此模型的预测,如下所示。

    public class Copurchase_prediction
{
public float Score { get; set; }
} public class ProductEntry
{
[KeyType(Contiguous = true, Count = 262111, Min = 0)]
public uint ProductID { get; set; } [KeyType(Contiguous = true, Count = 262111, Min = 0)]
public uint CoPurchaseProductID { get; set; }
}

一旦创建了预测引擎,就可以预测两个产品被共同购买的分数。

    //STEP 6: Create prediction engine and predict the score for Product 63 being co-purchased with Product 3.
// The higher the score the higher the probability for this particular productID being co-purchased
var predictionengine = model.MakePredictionFunction<ProductEntry, Copurchase_prediction>(ctx);
var prediction = predictionengine.Predict(
new ProductEntry()
{
ProductID = 3,
CoPurchaseProductID = 63
});

ML.NET 示例:推荐之One Class 矩阵分解的更多相关文章

  1. 推荐算法之用矩阵分解做协调过滤——LFM模型

    隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM ...

  2. HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法

    一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...

  3. 机器学习笔记7:矩阵分解Recommender.Matrix.Factorization

    目录 1矩阵分解概述 1.1用在什么地方 1.2推荐的原理 2矩阵分解的原理 2.1目标函数 2.2 损失函数 2.3 通过梯度下降的方法求得结果 3 代码实现 参考地址: 贪心学院:https:// ...

  4. ML.NET 示例:推荐之矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  5. ML.NET 示例:推荐之场感知分解机

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  6. 【Math for ML】矩阵分解(Matrix Decompositions) (下)

    [Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...

  7. ML.NET 示例:开篇

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  8. ML.NET 示例:目录

    ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn 英文原版请访问:https://github.com/ ...

  9. 用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...

随机推荐

  1. Android绘制优化(二)布局优化

    前言 我们知道一个界面的测量和绘制是通过递归来完成的,减少布局的层数就会减少测量和绘制的时间,从而性能就会得到提升.当然这只是布局优化的一方面,那么如何来进行布局的分析和优化呢?本篇文章会给你一个满意 ...

  2. CSS回顾(常见问题解决)

    一.margin的塌陷解决: BFC (block format context)块级格式化上下文格式 display:inline-block float:left / right overflow ...

  3. JAVA项目从运维部署到项目开发(一.Jenkins)

    一.Jenkins的介绍 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作, 旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. 二.功能 Jen ...

  4. scala模式匹配详细解析

    一.scala模式匹配(pattern matching) pattern matching可以说是scala中十分强大的一个语言特性,当然这不是scala独有的,但这不妨碍它成为scala的语言的一 ...

  5. LeetCode题解之Squares of a Sorted Array

    1.题目描述 2.问题分析 使用过两个计数器. 3.代码 class Solution { public: vector<int> sortedSquares(vector<int& ...

  6. ajax参数

    $.ajax({ type: "GET", url: "Login.ashx", dataType: "text", cache: fals ...

  7. java开发基础知识学习

    java环境配置 classpath: .当前目录 path: java 命令所在目录 jdk安装目录 jdk/bin jre安装目录 jre/bin 安装JDK后配置环境变量如下: 安装过程用到了j ...

  8. 如何使用Web3在浏览器中与智能合约进行交互

    2018-4-20 技术文章 Web3.js是以太坊官方的Javascript API,可以帮助智能合约开发者使用HTTP或者IPC与本地的或者远程的以太坊节点交互.实际上就是一个库的集合,主要包括下 ...

  9. win10同时安装 office2016和visio2016

    一.下载镜像文件 因为office 2016和 visio2016 镜像文件是一样的,只是名称不一样,所以只需要下载一个即可. 二.下载Office 2016 Deployment Tool工具 到微 ...

  10. Python 3 iter函数用法简述

    Python 3中关于iter(object[, sentinel)]方法有两个参数. 使用iter(object)这种形式比较常见. iter(object, sentinel)这种形式一般较少使用 ...