BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树。那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是这段区间的最小值。
在笛卡尔树上跑树形dp。设f[i][j]为在i子树对应棋盘中放j个车的方案数,且棋盘中只考虑这段区间在根的父亲高度上方的部分。转移考虑合并两棵子树再在新增加的矩形部分放车即可,捣鼓一下组合数。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 510
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[N],son[N][2],size[N],fa[N],f[N][N],root;
int fac[1000010],inv[1000010];
int build(int l,int r)
{
if (l==r) {size[l]=1;return l;}
int mx=l;
for (int i=l+1;i<=r;i++) if (a[i]<a[mx]) mx=i;
if (l<mx) son[mx][0]=build(l,mx-1);
if (mx<r) son[mx][1]=build(mx+1,r);
fa[son[mx][0]]=fa[son[mx][1]]=mx;
size[mx]=size[son[mx][0]]+size[son[mx][1]]+1;
return mx;
}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
void dfs(int k)
{
if (son[k][0]) dfs(son[k][0]);
if (son[k][1]) dfs(son[k][1]);
for (int i=0;i<=m;i++)
for (int j=0;j<=i;j++)
inc(f[k][i],1ll*f[son[k][0]][j]*f[son[k][1]][i-j]%P);
int h=a[k]-a[fa[k]];
for (int i=m;i>=0;i--)
for (int j=min(size[k],i-1);j>=0;j--)
inc(f[k][i],1ll*f[k][j]*C(size[k]-j,i-j)%P*C(h,i-j)%P*fac[i-j]%P);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2616.in","r",stdin);
freopen("bzoj2616.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=1;i<=n;i++) a[i]=read();
root=build(1,n);f[0][0]=1;
fac[0]=1;for (int i=1;i<=1000000;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=1000000;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=2;i<=1000000;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
dfs(root);
cout<<f[root][m];
return 0;
}
BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)的更多相关文章
- bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...
- bzoj2616: SPOJ PERIODNI——笛卡尔树+DP
不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子 ...
- BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)
题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...
- [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元
2616: SPOJ PERIODNI Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 128 Solved: 48[Submit][Status][ ...
- NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...
- 洛谷 P5044 - [IOI2018] meetings 会议(笛卡尔树+DP+线段树)
洛谷题面传送门 一道笛卡尔树的 hot tea. 首先我们考虑一个非常 naive 的区间 DP:\(dp_{l,r}\) 表示区间 \([l,r]\) 的答案,那么我们考虑求出 \([l,r]\) ...
- TopCoder 14084 BearPermutations2【笛卡尔树+dp】
传送:https://vjudge.net/problem/TopCoder-14084 只是利用了笛卡尔树的性质,设f[i][j]为区间[i,j]的贡献,然后枚举中间最大的点k来转移,首先是两侧小区 ...
随机推荐
- Java多线程核心技术(五)单例模式与多线程
本文只需要考虑一件事:如何使单例模式遇到多线程是安全的.正确的 1.立即加载 / "饿汉模式" 什么是立即加载?立即加载就是使用类的时候已经将对象创建完毕,常见的实现办法就是直接 ...
- 漫画 | Redis常见面试问题(一)
最近,阿音在为接下来的一场面试做准备,其中的内容包括redis,而且redis是重点内容. Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数 ...
- .NET-记一次架构优化实战与方案-目录
前言 本系列是根据我公司的某块业务优化进行改写的,为了避免触发法律的红线,我对部分代码做了截取并打码. 因为优化方案是针对现有业务的问题情况进行的,不做任何太过过分吹牛逼.一切以基于现有的业务,优化处 ...
- Item 21: 比起直接使用new优先使用std::make_unique和std::make_shared
本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 让我们先从std::make_unique和std::make_s ...
- 1、Django系列之web应用与http协议
第1节:最简单的web应用程序 Web应用程序指供浏览器访问的程序,通常也简称为Web应用.应用程序有两种模式C/S.B/S.C/S是客户端/服务器端程序,也就是说这类程序一般独立运行.而B/S就是浏 ...
- 实现多个标签页之间通信的几种方法(sharedworker)
效果图.gif prologue 之前在网上看到一个面试题:如何实现浏览器中多个标签页之间的通信.我目前想到的方法有三种:使用websocket协议.通过localstorage.以及使用html ...
- Django 中的Form表单认证
一.Form表单 1.1 Form的几个功能 验证用户数据(显示错误信息) 初始化页面显示内容 HTML Form提交保留上次提交数据 生成HTML标签 1.2 创建表单类Form 1. 创建 ...
- MySQL 深入浅出数据库索引原理(转)
本文转自:https://www.cnblogs.com/aspwebchh/p/6652855.html 前段时间,公司一个新上线的网站出现页面响应速度缓慢的问题, 一位负责这个项目的但并不是搞技术 ...
- Requires: libc.so.6(GLIBC_2.14)(64bit)
centos6 - CentOS 6 - libc.so.6(GLIBC_2.14)(64bit) is needed by - Server Faulthttps://serverfault.com ...
- 文件传输协议FTP、SFTP和SCP
网络通信协议分层 应用层: HTTP(Hypertext Transfer Protocol 超文本传输协议,显示网页) DNS(Domain Name System) FTP(File Transf ...