洛谷P1414又是毕业季二题解
思想:
首先这个题必定是一个数学题,肯定不是一个一个枚举得到解,这样肯定会T,所以我们就应该想一些别的方法,。
分析:
比如,答案,一定是递减的,因为该答案所满足的条件肯定是越来越苛刻的,所以我们是不是可以想一些其他的特殊方法,来达到我们的目的,然后让我们摆脱gcd的束缚,来联想一下gcd的一些性质,比如gcd一定是这k个数中的最大公因子,这是定义。
我们可以先把这几个数的所有因子全枚举出来, 并统计他们所出现的个数。
这里我们可以知道,只有该因子出现的次数大于题目中的k时,因为每个因子在每个数中只会增加一次,这就说明这个因子至少在k个数中是因子, 所以我们可以从大到小枚举每个因子,看是否出现k次就可以了。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
int data[], maxn, tot[];
int main() {
int n;
scanf("%d", &n);
for (int k = ; k <= n; k++) {
scanf("%d", &data[k]), maxn = max(maxn, data[k]);
for (int i = ; i * i <= data[k]; i++) {
if (i * i != data[k] && !(data[k] % i))
tot[i]++, tot[data[k] / i]++;
if (i * i == data[k])
tot[i]++;
}
}
for (int i = ; i <= n; i++) {
while (tot[maxn] < i)
maxn--;
printf ("%d\n", maxn);
}
}
洛谷P1414又是毕业季二题解的更多相关文章
- 洛谷-P1414 又是毕业季II -枚举因子
P1414 又是毕业季II:https://www.luogu.org/problemnew/show/P1414 题意: 给定一个长度为n的数列.要求输出n个数字,每个数字代表从给定数列中最合理地取 ...
- 洛谷P1414 又是毕业季 [数论]
题目传送门 又是毕业季 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在 ...
- 洛谷 P1414 又是毕业季II Label:None
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- 【数论】洛谷P1414又是毕业季II
题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业 ...
- 洛谷 P1414 又是毕业季II
题目链接 https://www.luogu.org/problemnew/show/P1414 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离 ...
- 洛谷 - P1414 - 又是毕业季II - 因数
https://www.luogu.org/problemnew/show/P1414 以后这种gcd的还是尽可能往分解那里想一下. 先把每个数分解,他的所有因子都会cnt+1. 然后从最大的可能因子 ...
- 洛谷 P1414 又是毕业季II (多个数的最大公因数)
这道题其实不难,但是我想复杂了 我想的是把每个数质因数分解,然后每次就枚举每个质因数 来求最小公倍数. 然后想了想这样复杂度将会非常的大,肯定超时 然后看了题解发现不需要质因数分解,直接存因数的个数就 ...
- 洛谷P1414 又是毕业季II
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- 洛谷 P1414 又是毕业季II(未完成)
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
随机推荐
- python数据类型--set(集合)
博客地址:http://www.cnblogs.com/yudanqu/ 首先,简单介绍一下set,set就是我们中学时所学的集合,当时集合的性质就包括一点,集合里不能有重复的数字.我们现在所用到的集 ...
- 使用 OpenSSL 创建私有 CA:2 中间证书
OpenSSL 创建私有 CA 三部曲:使用 OpenSSL 创建私有 CA:1 根证书使用 OpenSSL 创建私有 CA:2 中间证书使用 OpenSSL 创建私有 CA:3 用户证书 本文将在前 ...
- 二十:让行内元素在div中垂直居中
(1)使用display:table-cell配合vertical-align:center(淘宝也是这样用的) <div class="method4"> <s ...
- Python-time模块-58
time 模块: Eva_J import time time.sleep(100) #时间睡眠 print(time.time()) #返回一个以秒为单位的时间 时间模块 和时间有关系的我们就要用到 ...
- Python Revisited Day 04 (控制结构与函数)
目录 4.1 控制结构 4.1.1 条件分支 4.1.2 循环 4.2 异常处理 4.2.1 捕获与产生异常 4.2.2 自定义异常 4.3 自定义函数 Tips 参数默认值为可变时 危险 4.3.1 ...
- PS制作动感酷炫水人街舞照
一.打开原图素材,用钢笔工具把人物从图中扣取出来,新建一个812 * 1024像素的文档,把抠出的人物拖进来,过程如下图. 二.用你习惯的修图工具把人物的手.脸部.腰部.袜子通通修掉.再补回衣服在透视 ...
- 初次使用git上传代码到github远程仓库
https://blog.csdn.net/loner_fang/article/details/80488385 2018年05月28日 21:02:31 蒲公英上的尘埃 阅读数:697 因为最近在 ...
- (Git 学习)Git SSH Key 创建步骤
首先感谢segmentfalut上的朋友对我帮助. 首先:查看你是否有../ssh 这个文件:怎么查看:找到你的git安装目录,在安装目录下查看是否./ssh,以我的为例: 在C盘/Users/11/ ...
- 让Apache和Nginx支持php-fpm模块
Apache 对于Apache,首先是apache的安装,可以参考下面这篇博客:编译安装Apache 编辑apache配置文件,取消下面这两行的注释(删除前面的#): #LoadModule prox ...
- MySQL之慢查询日志和通用查询
MySQL中的日志包括:错误日志.二进制日志.通用查询日志.慢查询日志等等.这里主要介绍下比较常用的两个功能:通用查询日志和慢查询日志. 1.通用查询日志:记录建立的客户端连接和执行的语句. 2.慢查 ...