洛谷P1414又是毕业季二题解
思想:
首先这个题必定是一个数学题,肯定不是一个一个枚举得到解,这样肯定会T,所以我们就应该想一些别的方法,。
分析:
比如,答案,一定是递减的,因为该答案所满足的条件肯定是越来越苛刻的,所以我们是不是可以想一些其他的特殊方法,来达到我们的目的,然后让我们摆脱gcd的束缚,来联想一下gcd的一些性质,比如gcd一定是这k个数中的最大公因子,这是定义。
我们可以先把这几个数的所有因子全枚举出来, 并统计他们所出现的个数。
这里我们可以知道,只有该因子出现的次数大于题目中的k时,因为每个因子在每个数中只会增加一次,这就说明这个因子至少在k个数中是因子, 所以我们可以从大到小枚举每个因子,看是否出现k次就可以了。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
int data[], maxn, tot[];
int main() {
int n;
scanf("%d", &n);
for (int k = ; k <= n; k++) {
scanf("%d", &data[k]), maxn = max(maxn, data[k]);
for (int i = ; i * i <= data[k]; i++) {
if (i * i != data[k] && !(data[k] % i))
tot[i]++, tot[data[k] / i]++;
if (i * i == data[k])
tot[i]++;
}
}
for (int i = ; i <= n; i++) {
while (tot[maxn] < i)
maxn--;
printf ("%d\n", maxn);
}
}
洛谷P1414又是毕业季二题解的更多相关文章
- 洛谷-P1414 又是毕业季II -枚举因子
P1414 又是毕业季II:https://www.luogu.org/problemnew/show/P1414 题意: 给定一个长度为n的数列.要求输出n个数字,每个数字代表从给定数列中最合理地取 ...
- 洛谷P1414 又是毕业季 [数论]
题目传送门 又是毕业季 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在 ...
- 洛谷 P1414 又是毕业季II Label:None
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- 【数论】洛谷P1414又是毕业季II
题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业 ...
- 洛谷 P1414 又是毕业季II
题目链接 https://www.luogu.org/problemnew/show/P1414 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离 ...
- 洛谷 - P1414 - 又是毕业季II - 因数
https://www.luogu.org/problemnew/show/P1414 以后这种gcd的还是尽可能往分解那里想一下. 先把每个数分解,他的所有因子都会cnt+1. 然后从最大的可能因子 ...
- 洛谷 P1414 又是毕业季II (多个数的最大公因数)
这道题其实不难,但是我想复杂了 我想的是把每个数质因数分解,然后每次就枚举每个质因数 来求最小公倍数. 然后想了想这样复杂度将会非常的大,肯定超时 然后看了题解发现不需要质因数分解,直接存因数的个数就 ...
- 洛谷P1414 又是毕业季II
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- 洛谷 P1414 又是毕业季II(未完成)
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
随机推荐
- mysql及python交互
mysql在之前写过一次,那时是我刚刚进入博客,今天介绍一下mysql的python交互,当然前面会把mysql基本概述一下. 目录: 一.命令脚本(mysql) 1.基本命令 2.数据库操作命令 3 ...
- Linux 下RPM打包制作流程
原文地址:https://www.cnblogs.com/postgres/p/5726339.html 开始前的准备 安装rpmbuild软件包 yum -y install rpm-build 生 ...
- H5 61-浮动元素贴靠现象
61-浮动元素贴靠现象 <!DOCTYPE html><html lang="en"><head> <meta charset=" ...
- 移动web、webApp、混合APP、原生APP、androd H5混合开发 当无网络下,android怎么加载H5界面
PhoneGap是一个采用HTML,CSS和JavaScript的技术,创建移动跨平台移动应用程序的快速开发平台.它使开发者能够在网页中调用IOS,Android,Palm,Symbian,WP7,W ...
- [2019BUAA软工助教]结对编程 - 小结
[2019BUAA软工助教]结对编程 - 小结 一.评分规则 博客 博客共五十分 序号 要求 分值 1 在文章开头给出Github项目地址 1 2 在开始实现程序之前,在下述PSP表格记录下你估计将在 ...
- 1171: lfx捧杯稳啦!
escription Lfx在复习离散的时候突然想到了一个算法题,毕竟是lfx, 算法题如下: 他想知道这样的问题,先定义1~n中即是3的倍数,又是11的倍数的那些数的和sum, 他想知道sum有多少 ...
- [2017BUAA软工助教]个人项目测试结果
个人项目测试结果 标签(空格分隔): 未分类 9.29第一次测试结果 注:点击表头内相应项目可针对该项目进行排序 -c测试结果 INDEX NumberID -c 1 -c 5 -c 100 -c 5 ...
- Is-a
在知识表示.面向对象程序设计与面向对象设计的领域里, is-a(英语:subsumption,包含架构)指的是类的父子继承关系, 例如类D是另一个类B的子类(类B是类D的父类). 换句话说,通常&qu ...
- python3 网页下拉框和悬浮框操作基础汇总
#悬浮定位操作 from selenium.webdrier import ActionChains #浏览器实例化 #定位移动的位置赋给一个参数 ActionChains(浏览器).move_to_ ...
- Window.scrollTo()
摘要 滚动到文档中的某个坐标. 语法 window.scrollTo(x-coord,y-coord ) window.scrollTo(options) 参数 x-coord 是文档中的横轴坐标. ...