函数$f(x)=\sqrt[n]x(n-\ln x),$其中$n\in N^*,x\in(0,+\infty)$.
(1)若$n$为定值,求$f(x)$的最大值.
(2)求证:对任意$m\in N^+$,有$\ln1+\ln2+\cdots+\ln(m+1)>2(\sqrt{m+1}-1)^2;$
(3)若$n=2,\ln a\ge1,$求证:对任意$k>0,$直线$y=-kx+a$与曲线$y=f(x)$有唯一公共点.


分析:
1)$f(x)\le f(1)$即$\sqrt[n]x(n-\ln x)\le n$
2)由(1),取$n=2$得$\ln x\ge 2-\dfrac{2}{\sqrt{x}}$;注意到$\dfrac{1}{\sqrt{k}}\le 2(\sqrt{k}-\sqrt{k-1})$
故$\sum\limits_{k=2}^{m+1}\ln k\ge\sum\limits_{k=2}^{m+1}(2-\dfrac{2}{\sqrt{k}})$
$>\sum\limits_{k=2}^{m+1}[2-4(\sqrt{k}-\sqrt{k-1})]$
$=2m-4(\sqrt{m+1}-\sqrt{1})=2(\sqrt{m+1}-1)^2$
(3)$-kx+a=f(x)$有唯一解变形成$-k=\dfrac{\sqrt{x}(2-\ln x)-a}{x}$有唯一解.
令$t=\sqrt{x}>0$记$g(t)=\dfrac{t(2-2\ln t)-a}{t^2}$则由题意只需证明$y=-k<0$与$y=g(t)$的图像有唯一公共点.
$\because \lim\limits_{t\rightarrow 0}\dfrac{t(2-2\ln t)-a}{t^2}=-\infty; \lim\limits_{t\rightarrow +\infty}\dfrac{t(2-2\ln t)-a}{t^2}=0$
又$g^{'}(t)=\dfrac{-2t(2-\ln t)+2a}{t^3}\ge 0,(\textbf{由}h(t)=-2t(2-\ln t)+2a\ge h(e)=2(a-e)\ge0\textbf{可得})$
故由图可知对任意$k>0,y=-k$与$y=g(t)$由唯一公共交点.
注:这种图像唯一交点的题目通常可以通过上述方法,类似与参数分离,说明图像的变化趋势可得.

练习:(2018浙江高考压轴题)已知$f(x)=\sqrt{x}-\ln x$
(2)若$a\le3-4\ln2$,证明:对于任意$k$,直线$y=kx+a$与$y=f(x)$有唯一公共点.

MT【283】图像有唯一公共点.的更多相关文章

  1. OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(1)

    图像的几何变换是在不改变图像内容的前提下对图像像素的进行空间几何变换,主要包括了图像的平移变换.镜像变换.缩放和旋转等.本文首先介绍了图像几何变换的一些基本概念,然后再OpenCV2下实现了图像的平移 ...

  2. ✅Vue选择图像

    下载 Vue选择图像Vue选择图像 Vue 2.用于从列表中选择图像的组件 演示 https://mazipan.github.io/vue-select-image/ 安装 #纱 纱添加vue-se ...

  3. button标签和input button

    一.定义和用法 <button> 标签定义的是一个按钮. 在 button 元素内部,可以放置文本或图像.这是<button>与使用 input 元素创建的按钮的不同之处. 二 ...

  4. <button>和<input type="button"> 的区别

    <button>标签 定义和用法 <button> 标签定义一个按钮. 在 button 元素内部,您可以放置内容,比如文本或图像.这是该元素与使用 input 元素创建的按钮 ...

  5. html释疑

    解析<button>和<input type="button"> 的区别(转) 一.定义和用法 <button> 标签定义的是一个按钮. 在 b ...

  6. 51nod1253 Kundu and Tree

    树包含N个点和N-1条边.树的边有2中颜色红色('r')和黑色('b').给出这N-1条边的颜色,求有多少节点的三元组(a,b,c)满足:节点a到节点b.节点b到节点c.节点c到节点a的路径上,每条路 ...

  7. html系列教程--base button canvas caption

    <base> 标签 <base> 标签为页面上的所有链接规定默认地址或默认. demo: <head> <base href="http://www ...

  8. Html基础详解

    HTML是(Hyper Text Mark-up Language)超文本标记语言,是因特网上应用最为广泛的一种网络传输协议,所有的www文件都必须要遵守这个标准.这样就可以让浏览器根据标记语言的规则 ...

  9. HTML重要标签及属性详解

    我学习前端的时间不长,短短1个月而已,只学了些HTML5和CSS3还有少许javascript,另外还有网页布局等等辅助性书籍,我在模仿网页以及完成百度前端技术学院的任务过程中发现了我容易忘记的标签以 ...

随机推荐

  1. hibernate中实体与数据库中属性对应的类型

    常用的字段及类型,在数据库中字段名称若与实体对应的属性字段名称相同,hibernate可以自动映射,在一些情况下hibernate可能报错这时候有的错误可以通过指定对应的类型避免.下面给出一些常用的 ...

  2. D. Nastya Is Buying Lunch

    链接 [https://codeforces.com/contest/1136/problem/D] 题意 有N个人,a[i]表示第i个人的编号,m个二元组. 当前一个在后一个的前面一个位置时二者可以 ...

  3. 爬虫——scrapy框架

    Scrapy是一个异步处理框架,是纯Python实现的爬虫框架,其架构清晰,模块之间的耦合程度低,可拓展性强,可以灵活完成各种需求.我们只需要定制几个模块就可以轻松实现一个爬虫. 1.架构  Scra ...

  4. React-Native之轮播组件looped-carousel的介绍与使用

    React-Native之轮播组件looped-carousel的介绍与使用 一,关于react-native轮播组件的介绍与对比 1,react-native-swiper在动态使用网页图片,多张图 ...

  5. 2.请介绍一下List和ArrayList的区别,ArrayList和HashSet区别

    第一问: List是接口,ArrayList实现了List接口. 第二问: ArrayList实现了List接口,HashSet实现了Set接口,List和Set都是继承Collection接口. A ...

  6. python爬虫之Anaconda安装

    Anaconda概述 Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存.切 ...

  7. mysql关联、子查询索引优化

    1.驱动表:加索引不起作用,因为全表扫描.表1 left join 表2 ,此时表1是驱动表 被驱动表:给这个加索引.  关联查询  子查询时 尽量不使用not in 或者not exists 而是用 ...

  8. macOS & USB stick

    macOS & USB stick why macOS can only read USB stick, can not write files to USB stick macos 无法写文 ...

  9. Yii2的save()方法容易出错的地方

    如果save()返回true, 但是数据没有保存成功,则应该是开启了事务且已经回滚 如果save()返回false, 则使用$model->errors查看错误原因 可以设置$model的场景, ...

  10. vue 子组件修改父组件传来的props值,报错

    vue不推荐直接在子组件中修改父组件传来的props的值,会报错 [Vue warn]: Avoid mutating a prop directly since the value will be ...