【BZOJ5289】[HNOI2018]排列(贪心)
【BZOJ5289】[HNOI2018]排列(贪心)
题面
题解
这个限制看起来不知道在干什么,其实就是找到所有排列\(p\)中,\(p_k=x\),那么\(k<j\),其中\(a[p_j]=x\)。
也就是对于\(a\)数组的每个数\(a[i]\),它必须放在所有\(a[x]=i\)的前面。
那么对于\(i\)向所有满足\(a[x]=i\)的位置\(x\)连边,表示\(i\)必须放在这些数前面。
如果成环必定无解,如果无环则图是森林。
现在考虑每次从度数为\(0\)的点中选一个出来放在序列后面。
考虑这样一个问题,全局的最小值什么时候被选。
如果最小值入度为\(0\),显然直接被选。否则当它的父亲被选,那么它一定直接被选。
所以可以把最小值和其父亲合并在一起。
那么重复这个操作考虑每个联通块和他的父亲合并。
那么考虑两个块被选择的顺序关系,假设两个块\(a,b\),权值和为\(s_a,s_b\),点数为\(d_a,d_b\),那么:
\(W_{ab}=W_a+W_b+d_a*s_b\),\(W_{ba}=W_b+W_a+d_b*s_a\)。
不难发现如果\(a\)要放在\(b\)前面的话,就要满足\(d_a*s_b>d_b*s_a\)。即先选平均权值较小的块。
那么每次就选出这个块,然后把它和它的父亲合并在一起就好了,产生的贡献是\(d_a*s_b\)。
那么用\(set\)维护这个过程就做完了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<set>
using namespace std;
#define ll long long
#define MAX 500500
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,tot;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,a[MAX],w[MAX],d[MAX];ll ans,W[MAX];
struct data{ll s;int d,r;};set<data> Q;
bool operator<(data a,data b){ll s1=1ll*a.s*b.d,s2=1ll*b.s*a.d;return s1==s2?a.r<b.r:s1<s2;}
int f[MAX];int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
bool vis[MAX];int sz[MAX];
void dfs(int u,int ff)
{
vis[u]=true;sz[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
if(vis[v])puts("-1"),exit(0);
dfs(v,u);sz[u]+=sz[v];
}
}
data Get(int x){return (data){W[x],d[x],x};}
int main()
{
n=read();int pos=0;
for(int i=1;i<=n;++i)Add(a[i]=read(),i),f[i]=i;
for(int i=1;i<=n;++i)w[i]=read();
dfs(0,-1);if(sz[0]!=n+1){puts("-1");return 0;}
Q.insert((data){W[0]=1e18,d[0]=1,0});
for(int i=1;i<=n;++i)Q.insert((data){W[i]=w[i],d[i]=1,i});
while(!Q.empty())
{
data u=*Q.begin();Q.erase(u);if(!u.r)break;
int F=getf(a[u.r]);data v=Get(F);
Q.erase(v);ans+=u.s*v.d;
W[F]+=u.s;d[F]+=u.d;f[getf(u.r)]=F;
Q.insert(Get(F));
}
printf("%lld\n",ans);
return 0;
}
【BZOJ5289】[HNOI2018]排列(贪心)的更多相关文章
- BZOJ5289: [Hnoi2018]排列
传送门 第一步转化,令 \(q[p[i]]=i\),那么题目变成: 有一些 \(q[a[i]]<q[i]\) 的限制,\(q\) 必须为排列,求 \(max(\sum_{i=1}^{n}w[i] ...
- [BZOJ5289][HNOI2018]排列(拓扑排序+pb_ds)
首先确定将所有a[i]向i连边之后会形成一张图,图上每条有向边i->j表示i要在j之前选. 图上的每个拓扑序都对应一种方案(如果有环显然无解),经过一系列推导可以发现贪心策略与合并的块的大小和w ...
- BZOJ.5289.[AHOI/HNOI2018]排列(贪心 heap)
BZOJ LOJ 洛谷 \(Kelin\)写的挺清楚的... 要求如果\(a_{p_j}=p_k\),\(k\lt j\),可以理解为\(k\)要在\(j\)之前选. 那么对于给定的\(a_j=k\) ...
- 5289: [Hnoi2018]排列
5289: [Hnoi2018]排列 链接 分析: 首先将题意转化一下:每个点向a[i]连一条边,构成了一个以0为根节点的树,要求选一个拓扑序,点x是拓扑序中的第i个,那么价值是i*w[x].让价值最 ...
- BZOJ5289:[HNOI2018]排列
我对贪心的理解:https://www.cnblogs.com/AKMer/p/9776293.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem ...
- bzoj 5289: [Hnoi2018]排列
Description Solution 首先注意到实际上约束关系构成了一棵树 考虑这个排列 \(p\),编号为 \(a[i]\) 的出现了,\(i\) 才可以出现 那么如果连边 \((a[i],i) ...
- [HNOI2018]排列
Description: 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le a_i \le n\),以及 \(n\) 个整数 \(w_1, w_2, \dots, ...
- [HNOI/AHOI2018]排列 贪心
题面 题解: 把题面的限制换成中文: 如果排在第k位的下标 = 排在第j位的值 ,那么k < j 换一个描述方式: 一个值为x的数要排在第x个数后面. 再换一个描述方式: \(fa[i] = a ...
- loj2509 hnoi2018排列
题意:对于a数组,求它的一个合法排列的最大权值.合法排列:对于任意j,k,如果a[p[j]]=p[k],那么k<j. 权值:sigma(a[p[i]]*i).n<=50W. 标程: #in ...
随机推荐
- windows 内建环境变量
PS C:\Windows> ls env: Name Value ---- ----- _NT_SYMBOL_PATH srv*C:\Users\vv\Documents\symbols AL ...
- Composer之搭建自己的包工具
作为一个标准的PHPer,必须学会优雅的使用composer,最近,萌生了一个想法,我们每搭建一个项目,里面都会有许多的公用的方法和类库,每次使用的时候就是将其拷贝过来,或者重新写一遍,过于繁琐,效率 ...
- Oracle查询数据库编码
select userenv('language') from dual
- Junit概述
Junit -> java unit.也就是说Junit是xunit家族中的一员. unit <- unit test case,即单元测试用例. Junit = java uni ...
- idea 方便的设置代码段
使用快捷键(ctrl+alt+s)找到:从idea的菜单File->Settings->Editor->Live Templates 先添加Template Group,然后添加Li ...
- mysql 如何查看sql语句执行时间和效率
查看执行时间 1 show profiles; 2 show variables;查看profiling 是否是on状态: 3 如果是off,则 set profiling = 1: 4 执行自己的s ...
- 在使用IWMS的时候,IWMS自带函数样式无法满足我们需求。以下一段JS是实现左图右字的适用于IWMS的代码。
<div class="wz-list">里边需要有html做好的Html代码样式</div> <script> var attrnew = & ...
- LR 场景选项配置--笔记
1 tools-options --设置关系到loadgenerator行为应用于一个场景中的所有的load generator 这些设置用于未来所有运行的场景并且通常只需要设置一次 2 expert ...
- vue組件
組件有局部組件和全局組件,全局組件,其它的元素能夠調用. Prop父組件子組件看不大明白.
- Ajax之Jquery封装使用举例2(Json和JsonArray处理)
本例主要使用ajax进行异步数据请求,并针对返回数据为json和jsonarray类型的数据处理. 本例中只有前端的代码,后端代码不是本文重点,故省略. 后端接口返回数据为: Json: {" ...