【AGC002F】Leftmost Ball DP 数学
题目大意
有\(n\)种颜色的球,每种\(m\)个。现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色。求最终的颜色序列有多少种,对\(1000000007\)取模。
\(n,m\leq 2000\)
题解
我们称颜色为\(1\sim n\)的球为正常颜色的球,颜色为\(n+1\)的球为白球。
我们先钦定每种颜色最左边那个球的出现顺序为\(1\)~\(n\),从左往右的第\(i\)个白球的球对应着第\(i\)个颜色。
考虑从后往前放,设当前序列最前面有\(x\)个白球的球,那么当前放的白球要放在最前面,其他\(m-1\)个正常颜色的球中最左边那个要放在当前最左边正常颜色的球的左边。剩下\(m-2\)个可以随便放。
设\(f_{i,j}\)为放了后\(i\)种颜色的球,序列最前面有\(j\)个白球。
\]
可以发现后面那个组合数和\(k\)无关,所以可以用后缀和优化
时间复杂度:\(O(nm)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll p=1000000007;
ll fac[4000010];
ll ifac[4000010];
ll inv[4000010];
void init(int n)
{
int i;
fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;
for(i=2;i<=n;i++)
{
inv[i]=-(p/i)*inv[p%i]%p;
fac[i]=fac[i-1]*i%p;
ifac[i]=ifac[i-1]*inv[i]%p;
}
}
ll c(int x,int y)
{
if(x<y)
return 0;
return fac[x]*ifac[y]%p*ifac[x-y]%p;
}
ll f[2010][2010];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
if(k<=1)
{
printf("1\n");
return 0;
}
init(n*k);
int i,j;
f[0][0]=1;
for(i=1;i<=n;i++)
for(j=n;j>=0;j--)
{
if(j<=i)
f[i][j]+=f[i-1][j-1]*c(k*i-j-1,k-2)%p;
f[i][j]=(f[i][j]+f[i][j+1])%p;
}
ll ans=(f[n][0]%p+p)%p;
ans=ans*fac[n]%p;
printf("%lld\n",ans);
return 0;
}
【AGC002F】Leftmost Ball DP 数学的更多相关文章
- AtCoder AGC002F Leftmost Ball (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f 题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i ...
- AGC002 F Leftmost Ball——DP
题目:https://atcoder.jp/contests/agc002/tasks/agc002_f 充要条件是前缀0的个数 >= 颜色种数. 设计 DP ,放一个颜色的时候就把所有该颜色的 ...
- AGC002F Leftmost Ball
题目传送门 Description \(n\)种颜色的球,每种\(k\)个,\((n,k\leq 2000)\)将\(n\cdot k\)个球排成一排,把每种颜色最左边的那个涂成白色(初始不含白色), ...
- 【agc002f】Leftmost Ball(动态规划)
[agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...
- 【AtCoder】AGC022 F - Leftmost Ball 计数DP
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...
- ATcoder 2000 Leftmost Ball
Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite ...
- 【AGC 002F】Leftmost Ball
Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...
- # E. Mahmoud and Ehab and the xor-MST dp/数学+找规律+xor
E. Mahmoud and Ehab and the xor-MST dp/数学/找规律 题意 给出一个完全图的阶数n(1e18),点由0---n-1编号,边的权则为编号间的异或,问最小生成树是多少 ...
- 2018.10.25 atcoder Leftmost Ball(计数dp+组合数学)
传送门 dp妙题啊. 我认为DZYODZYODZYO已经说的很好了. 强制规定球的排序方式. 然后就变成了一个求拓扑序数量的问题. 代码: #include<bits/stdc++.h> ...
随机推荐
- 线程GIL锁 线程队列 回调函数
----------------------------------无法改变风向,可以调整风帆;无法左右天气,可以调整心情.如果事情无法改变,那就去改变观念. # # ---------------- ...
- PHP实用代码片段(四)
1. 删除文件夹内容 function Delete($path) { if (is_dir($path) === true) { $files = array_diff(scandir($path) ...
- Python IO模型
这篇博客是本人借鉴一些大神的博客并结合自己的学习过程写下的. 事件驱动模型 事件驱动模型是一种编程范式,这里程序的执行流由外部事件来决定.它的特点是包含一个事件循环,当外部事件发生时,不断从队列里取出 ...
- 02-安装linux系统
安装linux系统 需要准备的软件: 1.VMware-workstation-full-14.1.1.28517.exe 2.CentOS-6.5-x86_64-bin-DVD1.iso镜像文件 第 ...
- Column 'parent_id' specified twice
Hibernate Column 'parent_id' specified twice问题解决--insertable = false, updatable = false的使用 - shendeg ...
- 6-2 Verbs and Adjectives with that clauses
1 Many sentences in English contain two clauses: a main clause and a "that" clause. The &q ...
- linux 安装 SVN server
安装 使用yum安装非常简单: yum install subversion 配置 2.1. 创建仓库 我们这里在/home下建立一个名为svn的仓库(repository),以后所有代码都放在这个下 ...
- 网络编程--使用UDP发送接收数据
package com.zhangxueliang.udp; import java.io.IOException; import java.net.DatagramPacket; import ja ...
- docker开启加速(第三篇)
前言: docker的镜像仓库在国外,下载会很慢,启用阿里云加速. 第一步:cd /etc/docker目录下,打开daemon.json 第二步:修改daemon.json文件,添加阿里云加速: ...
- 剑指offer(19)二叉树中和为某一值的路径
题目: 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长度大的 ...