卢卡斯定理&扩展卢卡斯定理
卢卡斯定理
求\(C_m^n~mod~p\)
设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cdots+{b_k}^{p_k}\)
则\(C_m^n\equiv\prod{C_{a_i}^{b_i}}(mod~p)\)
扩展卢卡斯定理
好像这也不是什么定理,只是一个计算方法
计算\(C_m^n~mod~p\),其中\(p={p_1}^{q_1}\times{p_2}^{q_2}\times\cdots{p_k}^{q_k}\)时,我们可以先求出\(C_m^n~mod~{p_i}^{q_i}\),然后用CRT合并。
那么怎么计算\(C_m^n~mod~{p_i}^{q_i}\)呢?
\(C_m^n=\frac{m!}{n!(m-n)!}\),我们只需要算出\(m!,{n!}^{-1},{(m-n)!}^{-1}\),然后乘在一起。
zjt大爷:\(n!\)可能在模\({p_i}^{q_i}\)的意义下没有逆元啊,那这就是错的了啊
其实这里求得不是逆元(可能没有逆元),求出来的是\(a\times {p_i}^b(gcd(a,p)=1)\),前面的\(a\)用逆元,后面的次数加加减减一下就好了
问题转换成求\(n!~mod~p^q\)
例如\(n=19,p=3,q=2\):
\[
\begin{align}
&19!\\
=&1\times2\times3\times\cdots\times19\\
=&(1\times2\times4\times5\times7\times8\cdots\times16\times17\times19)\times(3\times6\times9\times12\times15\times18)\\
=&(1\times2\times4\times5\times7\times8\cdots\times16\times17)\times19\times3^6\times(1\times2\times3\times4\times5\times6)\\
=&{(1\times2\times4\times5\times7\times8)}^2\times19\times3^6\times(1\times2\times3\times4\times5\times6)
\end{align}
\]
上面这个式子分为四部分:
第一部分:\({(1\times2\times4\times5\times7\times8)}^2\)。这部分的数不超过\(p^q\)个,可以暴力算
第二部分:\(19\)。这部分的数不超过\(p^q\)个,可以暴力算
第三部分:\(3^6\)。这个在最后处理时求出\(m!,n!,(m-n)!\)分别有多少个\(p\)(设为\(x,y,z\)),则答案要乘上\(p^{x-y-z}\)
第四部分:\(1\times2\times3\times4\times5\times6\)。这个是\(\lfloor\frac{n}{p}\rfloor!\),可以递归处理
卢卡斯定理&扩展卢卡斯定理的更多相关文章
- bzoj2142 礼物——扩展卢卡斯定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...
- 【知识总结】扩展卢卡斯定理(exLucas)
扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[ ...
- LG4720 【模板】扩展卢卡斯定理
扩展卢卡斯定理 求 \(C_n^m \bmod{p}\),其中 \(C\) 为组合数. \(1≤m≤n≤10^{18},2≤p≤1000000\) ,不保证 \(p\) 是质数. Fading的题解 ...
- 【学习笔记】扩展卢卡斯定理 exLucas
引子 求 \[C_n^m\ \text{mod}\ p \] 不保证 \(p\) 是质数. 正文 对于传统的 Lucas 定理,必须要求 \(p\) 是质数才行.若 \(p\) 不一定是质数,则需要扩 ...
- 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
- 洛谷 P4720 【模板】扩展 / 卢卡斯 模板题
扩展卢卡斯定理 : https://www.luogu.org/problemnew/show/P4720 卢卡斯定理:https://www.luogu.org/problemnew/show/P3 ...
- 【luoguP4720】【模板】扩展卢卡斯
快速阶乘与(扩展)卢卡斯定理 \(p\)为质数时 考虑 \(n!~mod~p\) 的性质 当\(n>>p\)时,不妨将\(n!\)中的因子\(p\)提出来 \(n!\) 可以写成 \(a* ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
随机推荐
- rest-framework序列化
快速实例 Quickstart 序列化 开篇介绍: ---- 一切皆是资源,操作只是请求方式 ----book表增删改查 /books/ books /books/add/ addbook /book ...
- VMware虚拟机与Windows文件共享
开发中,我们经常的需求是这样的:我想再Windows中进行快捷开发,但是想在linux中运行,那么需要将文件方便在linux中管理,基本可以分成两种方式: 1. 使用网络工具:vmware_tool工 ...
- WPF中定时器Timer与DispatcherTimer的用法
最近的工作项目中需要定时更新UI控件中的数据,这时候第一反应肯定会想到去使用System.Timers.Timer定时更新UI控件,但是程序运行后,会发现程序崩溃了.报的异常为“调用线程无法访问此对象 ...
- 4 HttpServletResponse 与 HttpServletRequest
Web 服务器收到一个http请求,会针对每个请求创建一个HttpServletRequest 和 HttpServletReponse 对象,response用于向客户端发送数据,request用于 ...
- WebService实例-CRM系统提供WebService实现用户注册功能
<—start—> 编写crm的webservice接口,实现客户信息保存操作.在CustomerService接口中新增一个服务接口,用于添加客户注册的信息. @Path("/ ...
- mybatis一级缓存详解
mybatis缓存分为一级缓存,二级缓存和自定义缓存.本文重点讲解一级缓存 一:前言 在介绍缓存之前,先了解下mybatis的几个核心概念: * SqlSession:代表和数据库的一次会话,向用户提 ...
- java随笔1 Ctrl+1补全
Ctrl+1补全变量时,如果补全后的不是自己想要的, 比如:补全后这样 修改后 这时要对更改变量进行Ctrl+1补全路径 并且后者要进行Ctrl+1强转
- IIS下载地址
https://www.microsoft.com/zh-cn/download/confirmation.aspx?id=1038
- C#如何调用C++的dll
背景 一个项目,算法部分使用C++的openCV库编写图像处理程序,编译成dll,用户界面采用C#编写,去调用该dll暴露的接口. C#编写的是托管代码,编译生成微软中间语言,而普通C++代码则编译 ...
- 剑指offer(12)
来两道关于链表链接的题目: 题目一: 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. 本题要考虑到其中一条链表是空或者两个都是空的情况. 在每个链表安上一 ...