1. 代码实现

from __future__ import print_function
import theano
import theano.tensor as T
import numpy as np
import matplotlib.pyplot as plt

class Layer(object):
    def __init__(self, inputs, in_size, out_size, activation_function=None):
        self.W = theano.shared(np.random.normal(0, 1, (in_size, out_size)))
        self.b = theano.shared(np.zeros((out_size, )) + 0.1)
        self.Wx_plus_b = T.dot(inputs, self.W) + self.b
        self.activation_function = activation_function
        if activation_function is None:
            self.outputs = self.Wx_plus_b
        else:
            self.outputs = self.activation_function(self.Wx_plus_b)

# Make up some fake data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise        # y = x^2 - 0.5

# show the fake data
plt.scatter(x_data, y_data)
plt.show()

# determine the inputs dtype
x = T.dmatrix("x")
y = T.dmatrix("y")

# add layers
l1 = Layer(x, 1, 10, T.nnet.relu)
l2 = Layer(l1.outputs, 10, 1, None)

# compute the cost
cost = T.mean(T.square(l2.outputs - y))

# compute the gradients
gW1, gb1, gW2, gb2 = T.grad(cost, [l1.W, l1.b, l2.W, l2.b])

# apply gradient descent
learning_rate = 0.05
train = theano.function(
    inputs=[x, y],
    outputs=cost,
    updates=[(l1.W, l1.W - learning_rate * gW1),
             (l1.b, l1.b - learning_rate * gb1),
             (l2.W, l2.W - learning_rate * gW2),
             (l2.b, l2.b - learning_rate * gb2)])

# prediction
predict = theano.function(inputs=[x], outputs=l2.outputs)

for i in range(1000):
    # training
    err = train(x_data, y_data)
    if i % 50 == 0:
        print(err)

结果:

1.77825942078
0.0307547174779
0.0145354962126
0.0111276391112
0.0098326475625
0.00913968526182
0.00870222509
0.00832267806176
0.00788557725943
0.00737921234676
0.00684759006112
0.0063416352651
0.00589114798344
0.005512661812
0.00522628405891
0.00498177806607
0.00477628310217
0.00460285349102
0.00445516762566
0.00432311158005

莫烦theano学习自修第六天【回归】的更多相关文章

  1. 莫烦theano学习自修第七天【回归结果可视化】

    1.代码实现 from __future__ import print_function import theano import theano.tensor as T import numpy as ...

  2. 莫烦theano学习自修第九天【过拟合问题与正规化】

    如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另 ...

  3. 莫烦theano学习自修第十天【保存神经网络及加载神经网络】

    1. 为何保存神经网络 保存神经网络指的是保存神经网络的权重W及偏置b,权重W,和偏置b本身是一个列表,将这两个列表的值写到列表或者字典的数据结构中,使用pickle的数据结构将列表或者字典写入到文件 ...

  4. 莫烦theano学习自修第八天【分类问题】

    1. 代码实现 from __future__ import print_function import numpy as np import theano import theano.tensor ...

  5. 莫烦theano学习自修第五天【定义神经层】

    1. 代码如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np import theano.tensor as T ...

  6. 莫烦theano学习自修第四天【激励函数】

    1. 定义 激励函数通常用于隐藏层,是将特征值进行过滤或者激活的算法 2.常见的激励函数 1. sigmoid (1)sigmoid() (2)ultra_fast_sigmoid() (3)hard ...

  7. 莫烦theano学习自修第三天【共享变量】

    1. 代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np import theano.tensor as T i ...

  8. 莫烦theano学习自修第二天【激励函数】

    1. 代码如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np import theano.tensor as T ...

  9. 莫烦theano学习自修第一天【常量和矩阵的运算】

    1. 代码实现如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ # 导入numpy模块,因为numpy是常用的计算模块 import numpy as ...

随机推荐

  1. SQL Access Advisor in Oracle Database 10g

    The SQL Access Advisor makes suggestions about indexes and materialized views which might improve sy ...

  2. java 方法超时

    public void getcd() { logger.info("任务开始!-------------------------------------"); final Exe ...

  3. 1.java的基础和数据类型

    一.学习要求1.听课一定要全神贯注2.课堂笔记,一定要自己总结,而且要有很严谨的逻辑关系.提纲很重要3.作业不折不扣的完成,并且多完成4.阶段项目一定要独立完成5.每天早上由一位同学来进行早分享,内容 ...

  4. 2018-2019-2 20175310实验一《Java开发环境的熟悉》实验报告

    2018-2019-2 20175310实验一<Java开发环境的熟悉>实验报告 一.实验步骤及内容 (一).Java开发环境的熟悉-1 1.建立20175310exp1的目录 2.在20 ...

  5. Python中print和return的区别

    有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python  https://www.cnblogs.com/xxtalhr/p/10742671.html 一.解释 1.ret ...

  6. 从零开始搭建django前后端分离项目 系列三(实战之异步任务执行)

    前面已经将项目环境搭建好了,下面进入实战环节.这里挑选项目中涉及到的几个重要的功能模块进行讲解. celery执行异步任务和任务管理 Celery 是一个专注于实时处理和任务调度的分布式任务队列.由于 ...

  7. MapReduce中map并行度优化及源码分析

    mapTask并行度的决定机制 一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分 ...

  8. 翻转一个数组(c++实现)

    反转一个数组: 其实STL中的vector有一个reverse函数便可以使用. #include<iostream> using namespace std; int* ReverseAr ...

  9. 为github添加ssh key

    用git关联github上的远程仓库前需要先为github添加ssh key 一.检查本机是否生成ssh key 本地查找.ssh文件,其中id_rsa.pub中的内容就是ssh key 二.为git ...

  10. 基于CRM跟进(活动)记录中关键字识别的客户跟进加权值的成单概率算法

    1.提取销售人员的跟进记录,分析其中的骂人文字(负面情绪),将有负面情绪的客户的跟进排期,进行降权(权重)操作.重点跟进加权值较高的客户. 执行办法: 将销售与客户沟通的语音:电话,微信,QQ,通过调 ...