Problem UVA437-The Tower of Babylon

Accept: 3648  Submit: 12532
Time Limit: 3000 mSec

Problem Description

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi,yi,zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as thetwobasedimensionsoftheupperblockwerebothstrictlysmallerthanthecorresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi, yi and zi. Input is terminated by a value of zero (0) for n.

 Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’
 

 Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

题解:原来也做过这种题,但是从来没有升华到DAG上的动态规划这种理论高度(大佬就是强),有了这种主体思路,枚举起点,记忆化搜一发,很容易搞定。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn = ;

 int n;

 int cube[maxn][];
int dp[maxn][]; void get_dimensions(int *v, int id, int dim) {
int idx = ;
for (int i = ; i < ; i++) {
if (i != dim) {
v[idx++] = cube[id][i];
}
}
} int DP(int i, int j) {
int& ans = dp[i][j];
if (ans > ) return ans; ans = ;
int v[], v2[];
get_dimensions(v, i, j);
for (int x = ; x <= n; x++) {
for (int y = ; y < ; y++) {
get_dimensions(v2, x, y);
if (v2[] < v[] && v2[] < v[]) {
ans = max(ans, DP(x, y));
}
}
}
ans += cube[i][j];
return ans;
} int T = ; int main()
{
//freopen("input.txt", "r", stdin);
while (~scanf("%d", &n) && n) {
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
scanf("%d", &cube[i][j]);
}
sort(cube[i], cube[i] + );
} memset(dp, -, sizeof(dp));
int ans = ;
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
ans = max(ans, DP(i, j));
}
}
printf("Case %d: maximum height = %d\n", T++, ans);
}
return ;
}

UVA437-The Tower of Babylon(动态规划基础)的更多相关文章

  1. ACM - 动态规划 - UVA437 The Tower of Babylon

    UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...

  2. [动态规划]UVA437 - The Tower of Babylon

     The Tower of Babylon  Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...

  3. Uva437 The Tower of Babylon

    https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...

  4. UVa437 The Tower of Babylon(巴比伦塔)

    题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...

  5. 【DP】【Uva437】UVA437 The Tower of Babylon

    传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...

  6. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  7. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  8. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  9. POJ 2241 The Tower of Babylon

    The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...

随机推荐

  1. dubbo+zookeeper+springBoot框架整合与dubbo泛型调用演示

    dubbo + zookeeper + spring Boot框架整合与dubbo泛型调用演示   By:客 授客 QQ:1033553122  欢迎加入全国软件测试交流 QQ  群:7156436 ...

  2. C#设计模式之二十职责链模式(Chain of Responsibility Pattern)【行为型】

    一.引言 今天我们开始讲“行为型”设计模式的第八个模式,该模式是[职责链模式],英文名称是:Chain of Responsibility Pattern.让我们看看现实生活中的例子吧,理解起来可能更 ...

  3. Go实现基于WebSocket的弹幕服务

    拉模式和推模式 拉模式 1.数据更新频率低,则大多数请求是无效的 2.在线用户量多,则服务端的查询负载高 3.定时轮询拉取,实时性低 推模式 1.仅在数据更新时才需要推送 2.需要维护大量的在线长连接 ...

  4. Spring之AOP在XML中的配置方法

    AOP 即 Aspect Oriental Program 面向切面编程 先来一个栗子: <aop:config> <aop:pointcut id="loggerCutp ...

  5. K8S 部署 ingress-nginx (二) 部署后端为 tomcat

    在上面已经部署了 ingress-nginx, https://www.cnblogs.com/klvchen/p/9903480.html 创建 service 和 pods cd vi tomca ...

  6. cf997C. Sky Full of Stars(组合数 容斥)

    题意 题目链接 \(n \times n\)的网格,用三种颜色染色,问最后有一行/一列全都为同一种颜色的方案数 Sol Orz fjzzq 最后答案是这个 \[3^{n^2} - (3^n - 3)^ ...

  7. Nodejs全局/缓存路径配置

    $ npm config set prefix "D:\Program Files\nodejs\node_global" $ npm config set cache " ...

  8. Android权限之动态权限

    安卓系统的权限管理机制从API 23 (也就是Android 6.0 又叫做 Android M,)之后发生了比较大的改变,在一些比较危险的权限上要求必须申请动态权限,即使你在AndroidMainf ...

  9. git 入门教程之知识速查

    知识速查 创建版本库 初始化项目 git init 从零开始创建项目 示例 git init 克隆项目 git clone 将已有项目拷贝到本地 示例 git clone git@github.com ...

  10. git 入门教程之1分钟快速了解 git

    git 入门教程 git 是分布式版本控制系统,是文本文档管理的利器,是帮助你管理文件动态的好帮手. 如果你曾经手动管理过文档,一定有这样的经历,比如你正在编辑文档,想删除某段落,又担心不久后可能会恢 ...