Problem UVA437-The Tower of Babylon

Accept: 3648  Submit: 12532
Time Limit: 3000 mSec

Problem Description

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi,yi,zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as thetwobasedimensionsoftheupperblockwerebothstrictlysmallerthanthecorresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi, yi and zi. Input is terminated by a value of zero (0) for n.

 Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’
 

 Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

题解:原来也做过这种题,但是从来没有升华到DAG上的动态规划这种理论高度(大佬就是强),有了这种主体思路,枚举起点,记忆化搜一发,很容易搞定。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn = ;

 int n;

 int cube[maxn][];
int dp[maxn][]; void get_dimensions(int *v, int id, int dim) {
int idx = ;
for (int i = ; i < ; i++) {
if (i != dim) {
v[idx++] = cube[id][i];
}
}
} int DP(int i, int j) {
int& ans = dp[i][j];
if (ans > ) return ans; ans = ;
int v[], v2[];
get_dimensions(v, i, j);
for (int x = ; x <= n; x++) {
for (int y = ; y < ; y++) {
get_dimensions(v2, x, y);
if (v2[] < v[] && v2[] < v[]) {
ans = max(ans, DP(x, y));
}
}
}
ans += cube[i][j];
return ans;
} int T = ; int main()
{
//freopen("input.txt", "r", stdin);
while (~scanf("%d", &n) && n) {
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
scanf("%d", &cube[i][j]);
}
sort(cube[i], cube[i] + );
} memset(dp, -, sizeof(dp));
int ans = ;
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
ans = max(ans, DP(i, j));
}
}
printf("Case %d: maximum height = %d\n", T++, ans);
}
return ;
}

UVA437-The Tower of Babylon(动态规划基础)的更多相关文章

  1. ACM - 动态规划 - UVA437 The Tower of Babylon

    UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...

  2. [动态规划]UVA437 - The Tower of Babylon

     The Tower of Babylon  Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...

  3. Uva437 The Tower of Babylon

    https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...

  4. UVa437 The Tower of Babylon(巴比伦塔)

    题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...

  5. 【DP】【Uva437】UVA437 The Tower of Babylon

    传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...

  6. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  7. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  8. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  9. POJ 2241 The Tower of Babylon

    The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...

随机推荐

  1. Java_HashMap使用思路

    一.HashMap的应用思路 使用: Map,Set集合,String的split切割方法 ,增强for循环  使用思路:为所有key创建容器,之后容器中存放对应value 二.实现示例代码 1.两个 ...

  2. 让MySQL查询更加高效——对查询进行重构

    在优化有问题的查询时,目标应该是找到一个更优的方法获得实际需要的结果,而不是一定总是要求从MySQL获取一模一样的结果集 一个复杂查询还是多个简单查询 设计查询的时候一定需要考虑的问题就是,是否需要将 ...

  3. 关于Facebook和Google+授权登录

    实际中遇到需要Facebook和Google+等第三方授权登录自己的Web应用(可能还有Android和IOS的手机应用),本质上都是JS SDK的官方应用.这时候不得不去他们官方查看文档. 注:一下 ...

  4. SqL读取XML、解析XML、SqL将XML转换DataTable、SqL将XML转换表

    DECLARE @ItemMessage XML )) SET @ItemMessage=N' <ReceivablesInfos> <ReceivablesList> < ...

  5. K8S 通过 yaml 文件创建资源

    创建 pod cd ~ vi pod-demo.yaml # 内容如下 apiVersion: v1 kind: Pod metadata: name: pod-demo namespace: def ...

  6. css优先级计算规则——权重

    一.css的优先级 当对同一个元素设置相同的多个声明时,会按照优先级的高低选择应用哪种声明. <style> #id{ color:red; } p{ color:blue; } < ...

  7. [新特性]PeopleTools8.54+:PeopleSoft Application Engine新特性

    PeopleTools 8.54 的Application Engine 已经被更新,特别是在AE跟踪设置中有了更多的选项,本文将帮助您了解8.54的新AE特性以及如何使用这些特性. AE trace ...

  8. Python入门基础之list和tuple

    Python之创建list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可以用一个list表示: > ...

  9. windows平台vs2010编译64位libiconv与libxml2

    (一)安装libiconv下载路径https://ftp.gnu.org/pub/gnu/libiconv/注意这里选择libiconv-1.11.1版本,因为之后的版本没有Makefile.msvc ...

  10. testNG安装一直失败解决方法

    1.在eclipse界面选择“Help”--"Eclipse Marketplace"中进行查找TestNG 然后进“install” (成功) 2.在eclipse界面选择“He ...