UVA437-The Tower of Babylon(动态规划基础)
Accept: 3648 Submit: 12532
Time Limit: 3000 mSec
Problem Description
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi,yi,zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as thetwobasedimensionsoftheupperblockwerebothstrictlysmallerthanthecorresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi, yi and zi. Input is terminated by a value of zero (0) for n.
Output
Sample Input
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
题解:原来也做过这种题,但是从来没有升华到DAG上的动态规划这种理论高度(大佬就是强),有了这种主体思路,枚举起点,记忆化搜一发,很容易搞定。
#include <bits/stdc++.h> using namespace std; const int maxn = ; int n; int cube[maxn][];
int dp[maxn][]; void get_dimensions(int *v, int id, int dim) {
int idx = ;
for (int i = ; i < ; i++) {
if (i != dim) {
v[idx++] = cube[id][i];
}
}
} int DP(int i, int j) {
int& ans = dp[i][j];
if (ans > ) return ans; ans = ;
int v[], v2[];
get_dimensions(v, i, j);
for (int x = ; x <= n; x++) {
for (int y = ; y < ; y++) {
get_dimensions(v2, x, y);
if (v2[] < v[] && v2[] < v[]) {
ans = max(ans, DP(x, y));
}
}
}
ans += cube[i][j];
return ans;
} int T = ; int main()
{
//freopen("input.txt", "r", stdin);
while (~scanf("%d", &n) && n) {
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
scanf("%d", &cube[i][j]);
}
sort(cube[i], cube[i] + );
} memset(dp, -, sizeof(dp));
int ans = ;
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
ans = max(ans, DP(i, j));
}
}
printf("Case %d: maximum height = %d\n", T++, ans);
}
return ;
}
UVA437-The Tower of Babylon(动态规划基础)的更多相关文章
- ACM - 动态规划 - UVA437 The Tower of Babylon
UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...
- [动态规划]UVA437 - The Tower of Babylon
The Tower of Babylon Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...
- Uva437 The Tower of Babylon
https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...
- UVa437 The Tower of Babylon(巴比伦塔)
题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...
- 【DP】【Uva437】UVA437 The Tower of Babylon
传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- DAG 动态规划 巴比伦塔 B - The Tower of Babylon
题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- POJ 2241 The Tower of Babylon
The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...
随机推荐
- Retrofit2 原理解析
Retrofit是什么 官网介绍是A type-safe HTTP client for Android and Java,是一个 RESTful 的 HTTP 网络请求框架的封装,但网络请求不是Re ...
- wp rest api 授权方法步骤(使用JWT Authentication插件)
环境:wordpress 4.7 以上,WP自带的 rest api v2 目标:使用javascript与wp rest api交互,其中编辑.新增.删除等需要Oauth认证授权 方法: 步骤一: ...
- 异常:Data = 由于代码已经过优化或者本机框架位于调用堆栈之上,无法计算表达式的值。
做项目的时候,将DataTable序列化成Json,通过ashx向前台返回数据的时候,前台总是获取不到数据,但是程序运行却没问题, 没抛出异常.一时找不到办法,减小输出的数据量,这时前台可以接收到页面 ...
- [HTML/CSS]导航栏的下划线跟随效果
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
- application.properties多环境配置文件、jar包外部配置文件、配置项加密、程序中配置使用
一.简介 spring boot项目application.properties文件存放及使用介绍 二.方法一多环境配置文件 我们一般都会有多个应用环境,开发环境.测试环境.生产环境,各个环境的配置会 ...
- Git 结合Git使用Bitbucket进行代码版本管理流程规范与实践
结合Git使用Bitbucket进行代码版本管理流程规范与实践 By:授客 QQ:1033553122 目录 目录 1 一. 测试环境 2 二. 新建项目 2 三. 新建公有版本库 3 四. ...
- Visual Studio未能加载“XX”包的解决方案
1.打开命令行(管理员) 2.进入到devenv.exe所在的目录u 3.输入devenv,会出现帮助提示 4.将所有带“Reset..”的命令执行一遍 5.OK 我尝试过使用修复功能,貌似没有作用. ...
- leetcode-70.爬楼梯
leetcode-70.爬楼梯 Points 斐波那契 动态规划 题意 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给 ...
- JHipster生成微服务架构的应用栈(五)- 容器编排示例
本系列文章演示如何用JHipster生成一个微服务架构风格的应用栈. 环境需求:安装好JHipster开发环境的CentOS 7.4(参考这里) 应用栈名称:appstack 认证微服务: uaa 业 ...