洛谷P2261 余数求和
整除分块的小应用。
考虑到 k % x = k - (k / x) * x
所以把 x = 1...n 加起来就是 k * n - (k / i) * i
i = 1...k(注意这里是k)
对于这个 k / i 就可以整除分块了。
还要注意 k 与 n 的大小关系。
当 k < n 的时候,只需减去不大于k的部分即可。
当 n < k 的时候,注意别让 i > n 就行了。
#include <cstdio>
#include <algorithm>
typedef long long LL; inline void solve() {
LL n, k;
if(scanf("%lld%lld", &n, &k) == EOF) {
exit();
}
LL ans = n * k;
for(LL i = , j; i <= std::min(k, n); i = j + ) {
j = std::min(k / (k / i), n);
ans -= (k / i) * ((i + j) * (j - i + ) / );
} printf("%lld", ans);
return;
} int main() {
solve();
return ;
}
AC代码
洛谷P2261 余数求和的更多相关文章
- 洛谷 - P2261 - 余数求和
https://www.luogu.org/problemnew/show/P2261 看了一下题解,取模运算可以换成减法来做. $a\%b=a-b*\lfloor\frac{a}{b}\rfloor ...
- 洛谷P2261余数求和
传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
随机推荐
- Git SSH公钥配置
https://www.cnblogs.com/smuxiaolei/p/7484678.html https://blog.csdn.net/weixin_42063071/article/deta ...
- linux的一些基本命令
一.linux的一些基本命令(使用的是CentOS7系统): 1.创建用户组,创建新用户并添加到用户组 添加用户,添加用户组命令: 增加用户:useradd -d /usr/username -m u ...
- Object.prototype.toString.call()
源码中有这样一段: class2type = {}, toString = class2type.toString, function type(obj) { //obj为null或者undefi ...
- Android——Activity的简绍
Activity Activity的运行机制其实和JavaEE中的servlet很像,而我们的Android系统也就相当与其servlet容器,Activity在其中进行创建实例.初始化.运行.销毁等 ...
- python学习笔记(4)-基本数据类型-数字类型及操作
大学mooc 北京理工大学 python语言程序设计课程学习笔记 一.整数类型 可正可负,没有取值范围的限制(这个与c不同,c要考虑数据类型的存储空间).如pow(x,y),计算x的y次方,pow(2 ...
- jQuery的each使用陷阱
注意:jQuery使用each()函数进行循环时发现return false不能阻止程序继续向下执行 原因如下: (1)开始还以为是jQuery的each()函数是异步执行的,所以导致出错,其实不是. ...
- java 中的打印流
package cn.zhou; import java.io.BufferedInputStream; import java.io.BufferedReader; import java.io.F ...
- TP5系统变量输出
1.超全局变量 模板中: {$Think.sever.server_name} //全部小写,输出blog.cn 控制器: $_SERVER['SERVER_NAME'] ...
- 为什么int型最大的数是2147483647
32位的电脑中,用二进制表示,最大的就是32个1,用十进制表示为2^32-1,大概40多亿(4294967295) 对于有符号的,第一位用作表示正负(0,1),最大的就是31个1,用十进制表示为2^3 ...
- Zero to Build: Create new Xamarin apps in minutes with AppMap
Creating a new Xamarin.Forms app can be an intimidating task, especially if you add in content pages ...