ST算法(倍增)(用于解决RMQ)
ST算法
在RMQ(区间最值问题)问题中,我了解到一个叫ST的算法,实质是二进制的倍增。
ST算法能在O(nlogn)的时间预处理后,用O(1)的时间在线回答区间最值。
f[i][j]表示从i位起的2^j个数中的最大(最小)数,即[i,i+2^j-1]中的最大(最小)值,从其定义中可以看出来。
下面的实现代码以最大值为例:
预处理:
void preST(int len){
for(int i=;i<=len;i++) f[i][]=i;
int m=log(len)/log()+;
for(int j=;j<m;j++)
for(int i=;i<=(len-(<<j)+);i++)
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
//[i,i+2^j-1]最大值即是 i~i+2^(j-1)和 i+2^(j-1)~i+2^(j-1)+2^(j-1) 这两半区间的较大值
}
询问:
int queryST(int l,int r){
int k=log(r-l+)/log(); //保证k满足 2^k<r+l-1<=2^(k+1)
return max(f[l][k],f[r-(<<k)+][k]);
}
ST算法(倍增)(用于解决RMQ)的更多相关文章
- 算法学习 - ST表 - 稀疏表 - 解决RMQ问题
2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...
- [总结]RMQ问题&ST算法
目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- HDU 3183 - A Magic Lamp - [RMQ][ST算法]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 Problem DescriptionKiki likes traveling. One day ...
- RMQ问题之ST算法
RMQ问题之ST算法 RMQ(Range Minimum/Maximum Query)问题,即区间最值问题.给你n个数,a1 , a2 , a3 , ... ,an,求出区间 [ l , r ]的最大 ...
- RMQ问题(线段树+ST算法)
转载自:http://kmplayer.iteye.com/blog/575725 RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ ...
- RMQ问题与ST算法
RMQ(Range Minimum/Maximum Query)问题是求区间最值问题. 对于长度为 n 的数组 A,进行若干次查询,对于区间 [L,R] 返回数组A中下标在 [L,R] 中的最小(大) ...
- RMQ问题(线段树算法,ST算法优化)
RMQ (Range Minimum/Maximum Query)问题是指: 对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小(大)值 ...
- RMQ算法 (ST算法)
概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中 ...
随机推荐
- # 【Python3练习题 004】输入某年某月某日,判断这一天是这一年的第几天?
# [Python练习题 004]输入某年某月某日,判断这一天是这一年的第几天? # 思路:先判断是否为闰年,这关系到 2 月份的天数.# 之后再根据月份值把前几个月的天数累积加起来,最后再加上个“日 ...
- idea打包springboot+maven项目并发布在linux上
2018年11月13日我亲测有效的,很简单的,借鉴博客:https://blog.csdn.net/smilecall/article/details/56288972 第一步:随便建一个maven类 ...
- day 7-19 Mysql索引原理与查询优化
一,介绍 1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语 ...
- python爬虫之Gerapy安装部署
原创北航大才:https://cuiqingcai.com/5006.html NULL:http://www.infosec-wiki.com/?p=432737
- python学习笔记(10)--组合数据类型(字典类型)
理解映射: 映射是一种键(索引)和值(数据)的对应.字典是键值对的集合,键值之间无序.用大括号表示{},和dict()创建,键值对用冒号:表示. {键:值,键:值,键:值} >>> ...
- vscode運行vue和html
html 选中html文件,右键选择view in broswer.
- TestNG之使用ReportNG生成测试报告
TestNG使用ReportNG生成测试报告会更加美观. 依赖包 <!--testNG报告依赖包--> <dependency> <groupId>org.test ...
- 百度云虚拟主机配置 Thinkphp5.1
材料 服务器:百度云虚拟主机(nginx+php7.0+linux) Thinkphp 5.1 问题 百度云默认目录为/webroot,但是我们的需求是将项目存放到/webroot/public下面. ...
- MySQL的FIND_IN_SET()函数
今天在做项目时,看到了一个从没见过的MySQL函数——FIND_IN_SET(),顿时就产生了浓郁的兴趣,然后就搜了搜,翻了翻. 语法:FIND_IN_SET(str,strlist) 定义: 1. ...
- Js--动态生成表格
<div> <h1>动态生成表格</h1> <div id="table1"> 行 ...