python内置模块collections介绍
python内置模块collections介绍
collections是Python内建的一个集合模块,提供了许多有用的集合类。
1、namedtuple
python提供了很多非常好用的基本类型,比如不可变类型tuple,我们可以轻松地用它来表示一个二元向量。
>>> v = (2,3)
我们发现,虽然(2,3)表示出了一个向量的两个坐标,但是,如果没有额外说明,又很难直接看出这个元组是用来表示一个坐标的。
为此定义一个class又小题大做了,这时,namedtuple就派上用场了。
>>> from collections import namedtuple
>>> Vector = namedtuple('Vector', ['x', 'y'])
>>> v = Vector(2,3)
>>> v.x
2
>>> v.y
3
namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。
这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
我们可以验证创建的Vector对象的类型。
>>> type(v)
<class '__main__.Vector'>
>>> isinstance(v, Vector)
True
>>> isinstance(v, tuple)
True
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:
>>> Circle = namedtuple('Circle', ['x', 'y', 'r'])
# namedtuple('名称', [‘属性列表’])
2、deque
在数据结构中,我们知道队列和堆栈是两个非常重要的数据类型,一个先进先出,一个后进先出。在python中,使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向链表结构,非常适合实现队列和堆栈这样的数据结构。
>>> from collections import deque
>>> deq = deque([1, 2, 3])
>>> deq.append(4)
>>> deq
deque([1, 2, 3, 4])
>>> deq.appendleft(5)
>>> deq
deque([5, 1, 2, 3, 4])
>>> deq.pop()
4
>>> deq.popleft()
5
>>> deq
deque([1, 2, 3])
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
3、defaultdict
使用dict字典类型时,如果引用的key不存在,就会抛出KeyError。如果希望Key不存在时,返回一个默认值,就可以用defaultdict。
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'defaultvalue')
>>> dd['key1'] = 'a'
>>> dd['key1']
'a'
>>> dd['key2'] # key2未定义,返回默认值
'defaultvalue'
注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。
除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。
4、OrderedDict
使用dict时,key是无序的。在对dict做迭代时,我们无法确定key的顺序。
但是如果想要保持key的顺序,可以用OrderedDict。
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict的key会按照插入的顺序排列,不是key本身排序
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
['z', 'y', 'x']
OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的key。
from collections import OrderedDict
class LastUpdatedOrderedDict(OrderedDict):
def __init__(self, capacity):
super(LastUpdatedOrderedDict, self).__init__()
self._capacity = capacity
def __setitem__(self, key, value):
containsKey = 1 if key in self else 0
if len(self) - containsKey >= self._capacity:
last = self.popitem(last=False)
print('remove:', last)
if containsKey:
del self[key]
print('set:', (key, value))
else:
print('add:', (key, value))
OrderedDict.__setitem__(self, key, value)
5、ChainMap
ChainMap可以把一组dict串起来并组成一个逻辑上的dict。ChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。
什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。
下面的代码演示了如何查找user和color这两个参数。
from collections import ChainMap
import os, argparse
# 构造缺省参数:
defaults = {
'color': 'red',
'user': 'guest'
}
# 构造命令行参数:
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }
# 组合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)
# 打印参数:
print('color=%s' % combined['color'])
print('user=%s' % combined['user'])
没有任何参数时,打印出默认参数:
$ python3 use_chainmap.py
color=red
user=guest
当传入命令行参数时,优先使用命令行参数:
$ python3 use_chainmap.py -u bob
color=red
user=bob
同时传入命令行参数和环境变量,命令行参数的优先级较高:
$ user=admin color=green python3 use_chainmap.py -u bob
color=green
user=bob
6、Counter
Counter是一个简单的计数器,例如,统计字符出现的个数:
from collections import Counter
>>> s = 'abbcccdddd'
>>> Counter(s)
Counter({'d': 4, 'c': 3, 'b': 2, 'a': 1})
Counter实际上也是dict的一个子类。
7、小结
collections模块提供了一些有用的集合类,可以根据需要选用。
python内置模块collections介绍的更多相关文章
- python 内置模块--collections
1.计数器(counter) Counter是对字典的补充,用于追踪值出现的次数. Counter具有字典的全部属性和自己的属性. >>>import collections obj ...
- python内置模块介绍(一)
本文主要介绍模块列表如下: os sys re time datetime random shutil subprocess os模块 os.getcwd() ...
- Python 入门之 内置模块 -- collections模块
Python 入门之 内置模块 -- collections模块 1.collections -- 基于Python自带的数据类型之上额外增加的几个数据类型 from collections 在内 ...
- Python内置模块(re+collections+time等模块)
Python内置模块(re+collections+time等模块) 1. re模块 import re 在python要想使用正则必须借助于模块 re就是其中之一 1.1 findall功能( re ...
- python内置模块(4)
这一部分是python内置模块系列的最后一部分,介绍了一些小巧有用的内置模块. 目录: 1.random 2.shelve 3.getpass 4.zipfile 5.tarfile 6.bisect ...
- python内置模块[re]
python内置模块[re] re模块: python的re模块(Regular Expression正则表达式)提供各种正则表达式的匹配操作,在文本解析.复杂字符串分析和信息提取时是一个非常有用的工 ...
- 每天学点Python之collections
每天学点Python之collections 内容摘抄自:<python大法好>的每天学点Python之collections collections模块在内置数据类型(dict.list ...
- python:collections模块
Counter类 介绍:A counter tool is provided to support convenient and rapid tallies 构造:class collections. ...
- Python 高级特性介绍 - 迭代的99种姿势 与协程
Python 高级特性介绍 - 迭代的99种姿势 与协程 引言 写这个笔记记录一下一点点收获 测试环境版本: Python 3.7.4 (default, Sep 28 2019, 16:39:19) ...
随机推荐
- SQL SERVER数据库多条件查询
例如:查询挂号超500的数据select CONVERT(VARCHAR(10),DGH,23),COUNT(*) from yxhis2017..VTBMZGHMX2017 where bth=0 ...
- PHP中sha1()函数和md5()函数的绕过
相信大家都知道,sha1函数和md5都是哈希编码的一种,在PHP中,这两种编码是存在绕过漏洞的. PHP在处理哈希字符串时,会利用”!=”或”==”来对哈希值进行比较,它把每一个以”0E”开头的哈希值 ...
- 尹吉峰:使用 OpenResty 搭建高性能 Web 应用
2019 年 8 月 31 日,OpenResty 社区联合又拍云,举办 OpenResty × Open Talk 全国巡回沙龙·成都站,原贝壳找房基础架构部工程师尹吉峰在活动上做了<使用 O ...
- java位运算,逻辑运算符
位运算逻辑运算符包括: 与(&),非(~),或(|),异或(^). &: 条件1&条件2 ,只有条件1和条件2都满足, 整个表达式才为真true, 只要有1个为false ...
- 彩虹战队waf测试工具(测试数据)
安全狗 D盾 云锁 360主机卫士 奇安信 绿盟 腾讯云 百度云 阿里云 小米斗鱼 启明星辰/天融信 深信服 华为 知道创宇 长亭 360天眼
- 全面认识nslookup命令及子命令
- lnmp安装mysql
lnmp安装mysql 下载lnmp wget http://soft.vpser.net/lnmp/lnmp1.6.tar.gz 解压 tar ‐xf lnmp1..tar.gz 安装数据库 ./i ...
- 百万年薪python之路 -- 并发编程之 多线程 一
多线程 1.进程: 生产者消费者模型 一种编程思想,模型,设计模式,理论等等,都是交给你一种编程的方法,以后遇到类似的情况,套用即可 生产者与消费者模型的三要素: 生产者:产生数据的 消费者:接收数据 ...
- git 拉取指定的远程分支(三种方式)
直接拉取 git clone -b ants git@github.com:Ants-double/CareerJava.git git clone -b 远程分支名 仓库地址 本地已经有相关的仓库代 ...
- volatile关键字使用
1.volatile 使用场景(多线程情况下): 适合使用在 一写多读 的情况下: 2.volatile 理解分析: 使用 volatile 关键字修饰的变量,值在改变时会直接刷新到 主内存 中,而不 ...